Patents by Inventor Gaetano Rossiello

Gaetano Rossiello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240330264
    Abstract: Embodiments of the invention are directed to a computer system comprising a memory communicatively coupled to a processor system. The processor system is operable to perform processor system operations that include accessing query information associated with a to-be-augmented information set (TBAIS) having a TBAIS format. Query information sequence vectors (QISV) are generated that represent the query information and the TBAIS. Unannotated data repository information sequence vectors (UDRSV) are accessed that represent unannotated data repository information having a plurality of information formats. Matching UDRSV are identified, where the matching UDRSV include the UDRSV that match the QISV. A response to the query information is generated based at least in part on the matching UDRSV.
    Type: Application
    Filed: March 29, 2023
    Publication date: October 3, 2024
    Inventors: Michael Robert Glass, Gaetano Rossiello, Alfio Massimiliano Gliozzo, Ankita Rajaram Naik, Xueqing Wu
  • Patent number: 12106230
    Abstract: A computer-implemented method according to one embodiment includes identifying a natural language query; translating the natural language query into an intermediate representation; converting the intermediate representation into one or more query triples; and performing relation linking between each of the one or more query triples and a plurality of knowledge base triples.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: October 1, 2024
    Assignee: International Business Machines Corporation
    Inventors: Nandana Mihindukulasooriya, Gaetano Rossiello, Alfio Massimiliano Gliozzo, Pavan Kapanipathi Bangalore, Salim Roukos
  • Patent number: 12072841
    Abstract: One or more systems, devices, computer program products and/or computer-implemented methods of use provided herein relate to a process for generating the classification of files to allow for file system organization and/or query augmentation. A system can comprise a memory that stores computer executable components, and a processor that executes the computer executable components stored in the memory, wherein the computer executable components can comprise a generating component that generates a keyphrase based on a context derived from evaluation of an input file, wherein the generating component employs a public repository of files annotated with a plurality of keyphrases, including the keyphrase, to generate the keyphrase based on the context, and an execution component that classifies the input file based on the keyphrase. In one or more embodiments, the input file can comprise a query, and classification of the input file can comprise augmenting the query based on the keyphrase.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: August 27, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Alfio Massimiliano Gliozzo, Nandana Mihindukulasooriya, Michael Robert Glass
  • Publication number: 20240202447
    Abstract: An embodiment includes generating a training dataset by aligning text from a document of a document database with a named entity from a knowledge base. The embodiment generates an enhanced training dataset by updating the training dataset to include a named entity type and a named entity label associated with the named entity. The embodiment trains a natural language processing (NLP) model using the enhanced training dataset resulting in a trained NLP model. The embodiment identifies, using the trained NLP model, the named entity in a block of unstructured text and generates, using the trained NLP model, a target sequence that includes a relationship between the named entity and a tail entity, as well as the named entity type and the named entity label of the named entity and a tail entity type and a tail entity label of the tail entity.
    Type: Application
    Filed: December 14, 2022
    Publication date: June 20, 2024
    Applicant: International Business Machines Corporation
    Inventors: Gaetano Rossiello, Alfio Massimiliano Gliozzo, NANDANA SAMPATH MIHINDUKULASOORIYA, Faisal Mahbub Chowdhury, Michael Robert Glass
  • Publication number: 20240160607
    Abstract: One or more systems, devices, computer program products and/or computer-implemented methods of use provided herein relate to a process for generating the classification of files to allow for file system organization and/or query augmentation. A system can comprise a memory that stores computer executable components, and a processor that executes the computer executable components stored in the memory, wherein the computer executable components can comprise a generating component that generates a keyphrase based on a context derived from evaluation of an input file, wherein the generating component employs a public repository of files annotated with a plurality of keyphrases, including the keyphrase, to generate the keyphrase based on the context, and an execution component that classifies the input file based on the keyphrase. In one or more embodiments, the input file can comprise a query, and classification of the input file can comprise augmenting the query based on the keyphrase.
    Type: Application
    Filed: November 14, 2022
    Publication date: May 16, 2024
    Inventors: Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Alfio Massimiliano Gliozzo, Nandana Mihindukulasooriya, Michael Robert Glass
  • Publication number: 20240160653
    Abstract: Using a trained keyphrase generation model, a set of keyphrases corresponding to an input document is generated, a keyphrase in the set of keyphrases comprising a word summarizing a portion of a document. A relevance score measuring a similarity between the keyphrase and the document is calculated for a keyphrase in the set of keyphrases. The relevance score is adjusted according to a diversity balancing function.
    Type: Application
    Filed: November 14, 2022
    Publication date: May 16, 2024
    Applicant: International Business Machines Corporation
    Inventors: Md Faisal Mahbub Chowdhury, Alfio Massimiliano Gliozzo, Gaetano Rossiello, Michael Robert Glass, NANDANA SAMPATH MIHINDUKULASOORIYA
  • Publication number: 20240111969
    Abstract: Methods, systems, and computer program products for natural language data generation using automated knowledge distillation techniques are provided herein. A computer-implemented method includes retrieving, in response to an input query, a set of passages from at least one knowledge base by processing the input query using a first set of artificial intelligence techniques; ranking at least a portion of the set of passages by processing the set of passages using a second set of artificial intelligence techniques; generating at least one natural language answer, in response to the input query, by processing a subset of the set of passages in connection with automated knowledge distillation techniques based on the ranking of the at least a portion of the set of passages; and performing automated actions based on the ranking of the at least a portion of the set of passages and/or the at least one generated natural language answer.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Michael Robert Glass, Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Alfio Massimiliano Gliozzo
  • Patent number: 11941010
    Abstract: Embodiments of the present invention provide a computer system, a computer program product, and a method that comprises analyzing a performed query by identifying a plurality of indicative markers based on a pre-stored classification database associated with the performed query; generating a plurality of facets based on the analysis of the performed query; selecting at least two facets within the generated plurality of facets by determining a quantitative similarity value between each respective facet and the plurality of identified indicative markers associated with the performed query; dynamically ranking the selected facets by prioritizing the selected facets based on a calculated overall score associated with assigned weighted values for each selected facet in the generated plurality of facets using a supervised machine learning algorithm; and displaying the dynamically ranked facets within a user interface of a computing device associated with a user.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: March 26, 2024
    Assignee: International Business Machines Corporation
    Inventors: Soumitra Sarkar, Md Faisal Mahbub Chowdhury, Ruchi Mahindru, Gaetano Rossiello, Alfio Massimiliano Gliozzo, Nicolas Rodolfo Fauceglia
  • Patent number: 11625573
    Abstract: A first neural network is operated on a processor and a memory to encode a first natural language string into a first sentence encoding including a set of word encodings. Using a word-based attention mechanism with a context vector, a weight value for a word encoding within the first sentence encoding is adjusted to form an adjusted first sentence encoding. Using a sentence-based attention mechanism, a first relationship encoding corresponding to the adjusted first sentence encoding is determined. An absolute difference between the first relationship encoding and a second relationship encoding is computed. Using a multi-layer perceptron, a degree of analogical similarity between the first relationship encoding and a second relationship encoding is determined.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: April 11, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alfio Massimiliano Gliozzo, Gaetano Rossiello, Robert G. Farrell
  • Publication number: 20230087667
    Abstract: Embodiments of the present invention provide computer-implemented methods, computer program products and computer systems. Embodiments of the present invention can, in response to receiving information, learn entity representations and cluster assignments of respective entity representations in a joint manner for both entities and relations of respective entities.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Inventors: Sarthak Dash, Gaetano Rossiello, NANDANA MIHINDUKULASOORIYA, Sugato Bagchi, Alfio Massimiliano Gliozzo
  • Patent number: 11573994
    Abstract: A computer-implemented method for performing cross-document coreference for a corpus of input documents includes determining mentions by parsing the input documents. Each mention includes a first vector for spelling data and a second vector for context data. A hierarchical tree data structure is created by generating several leaf nodes corresponding to respective mentions. Further, for each node, a similarity score is computed based on the first and second vectors of each node. The hierarchical tree is populated iteratively until a root node is created. Each iteration includes merging two nodes that have the highest similarity scores and creating an entity node instead at a hierarchical level that is above the two nodes being merged. Further, each iteration includes computing the similarity score for the entity node. The nodes with the similarity scores above a predetermined value are entities for which coreference has been performed in input documents.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: February 7, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Robert Glass, Nicholas Brady Garvan Monath, Robert G. Farrell, Alfio Massimiliano Gliozzo, Gaetano Rossiello
  • Publication number: 20230009946
    Abstract: Systems, devices, computer-implemented methods, and/or computer program products that facilitate generative relation linking for question answering over knowledge bases. In one example, a system can comprise a processor that executes computer executable components stored in memory. The computer executable components can comprise a relation linking component. The relation linking component can map relations identified in a natural language question to corresponding relations of a knowledge base using a generative model.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 12, 2023
    Inventors: Gaetano Rossiello, Nandana Mihindukulasooriya, Alfio Massimiliano Gliozzo
  • Patent number: 11526688
    Abstract: One embodiment of the invention provides a method for terminology ranking for use in natural language processing. The method comprises receiving a list of terms extracted from a corpus, where the list comprises a ranking of the terms based on frequencies of the terms across the corpus. The method further comprises accessing a domain ontology associated with the corpus, and re-ranking the list based on the domain ontology. The resulting re-ranked list comprises a different ranking of the terms based on relevance of the terms using knowledge from the domain ontology. The method further comprises generating clusters of terms via a trained model adapted to the corpus, and boosting a rank of at least one term of the re-ranked list based on the clusters to increase a relevance of the at least one term using knowledge from the trained model.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: December 13, 2022
    Assignee: International Business Machines Corporation
    Inventors: Nandana Mihindukulasooriya, Ruchi Mahindru, Md Faisal Mahbub Chowdhury, Yu Deng, Alfio Massimiliano Gliozzo, Sarthak Dash, Nicolas Rodolfo Fauceglia, Gaetano Rossiello
  • Patent number: 11520762
    Abstract: A computer-implemented method according to one embodiment includes converting an input question into a vector form using trained word embeddings; constructing a type similarity matrix using a predetermined ontology; and determining a score for all possible types for the input question, based on the input question in vector form and the type similarity matrix.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: December 6, 2022
    Assignee: International Business Machines Corporation
    Inventors: Sarthak Dash, Gaetano Rossiello, Alfio Massimiliano Gliozzo, Robert G. Farrell, Bassem Makni, Avirup Sil, Vittorio Castelli, Radu Florian
  • Patent number: 11481404
    Abstract: A method, system, and computer program product for automated evaluation of information retrieval systems are provided. The method accesses a natural language query from a set of natural language queries. The natural language query is associated with a query difficulty level. The method generates one or more natural language responses to the natural language natural language query. Each natural language response is associated with at least one facet of the plurality of facets. The method generates a set of feedback cues. A set of search results for the natural language query are returned. The set of search results include a highest ranked natural language response of the one or more natural language responses. The method generates an evaluation result for the HCIR system for the query difficulty level based on the one or more natural language responses, the set of search results, and the set of feedback cues.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: October 25, 2022
    Assignee: International Business Machines Corporation
    Inventors: Md Faisal Mahbub Chowdhury, Yu Deng, Alfio Massimiliano Gliozzo, Ruchi Mahindru, Nandana Mihindukulasooriya, Nicolas Rodolfo Fauceglia, Gaetano Rossiello
  • Publication number: 20220327356
    Abstract: A system, product, and method are provided for improving knowledge graph (KG) link prediction using transformer-based artificial neural networks. A first topic model is leveraged against a first dataset derived from a KG containing a plurality of first triples. The first triples include first entities and first edges connecting the first entities to represent relationships between the first connected entities. A first similarity function is applied to the first connected entities of the first triples to provide respective first similarity scores. A first subset of one of more first triples is selected from the plurality of first triples based upon the first similarity scores. An artificial neural network is trained using the selected first subset of one or more first triples.
    Type: Application
    Filed: April 12, 2021
    Publication date: October 13, 2022
    Applicant: International Business Machines Corporation
    Inventors: Gaetano Rossiello, Alfio Massimiliano Gliozzo, Xuan Wang
  • Patent number: 11429352
    Abstract: A method, a computer system, and a computer program product for building pre-trained contextual embeddings is provided. Embodiments of the present invention may include collecting programming code. Embodiments of the present invention may include loading and preparing the programming code using a specialized programming language keywords-based vocabulary. Embodiments of the present invention may include creating contextual embeddings for the programming code. Embodiments of the present invention may include storing the contextual embeddings.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: August 30, 2022
    Assignee: International Business Machines Corporation
    Inventors: Saurabh Pujar, Luca Buratti, Alessandro Morari, Jim Alain Laredo, Alfio Massimiliano Gliozzo, Gaetano Rossiello
  • Publication number: 20220197916
    Abstract: Embodiments of the present invention provide a computer system, a computer program product, and a method that comprises analyzing a performed query by identifying a plurality of indicative markers based on a pre-stored classification database associated with the performed query; generating a plurality of facets based on the analysis of the performed query; selecting at least two facets within the generated plurality of facets by determining a quantitative similarity value between each respective facet and the plurality of identified indicative markers associated with the performed query; dynamically ranking the selected facets by prioritizing the selected facets based on a calculated overall score associated with assigned weighted values for each selected facet in the generated plurality of facets using a supervised machine learning algorithm; and displaying the dynamically ranked facets within a user interface of a computing device associated with a user.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Soumitra Sarkar, Md Faisal Mahbub Chowdhury, Ruchi Mahindru, Gaetano Rossiello, Alfio Massimiliano Gliozzo, Nicolas Rodolfo Fauceglia
  • Publication number: 20220129770
    Abstract: A computer-implemented method according to one embodiment includes identifying a natural language query; translating the natural language query into an intermediate representation; converting the intermediate representation into one or more query triples; and performing relation linking between each of the one or more query triples and a plurality of knowledge base triples.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 28, 2022
    Inventors: Nandana Mihindukulasooriya, Gaetano Rossiello, Alfio Massimiliano Gliozzo, Pavan Kapanipathi Bangalore, Salim Roukos
  • Publication number: 20220083559
    Abstract: A method, system, and computer program product for automated evaluation of information retrieval systems are provided. The method accesses a natural language query from a set of natural language queries. The natural language query is associated with a query difficulty level. The method generates one or more natural language responses to the natural language natural language query. Each natural language response is associated with at least one facet of the plurality of facets. The method generates a set of feedback cues. A set of search results for the natural language query are returned. The set of search results include a highest ranked natural language response of the one or more natural language responses. The method generates an evaluation result for the HCIR system for the query difficulty level based on the one or more natural language responses, the set of search results, and the set of feedback cues.
    Type: Application
    Filed: September 16, 2020
    Publication date: March 17, 2022
    Inventors: Md Faisal Mahbub Chowdhury, Yu Deng, Alfio Massimiliano Gliozzo, Ruchi Mahindru, NANDANA MIHINDUKULASOORIYA, Nicolas Rodolfo Fauceglia, Gaetano Rossiello