Patents by Inventor Gakuji Uozumi

Gakuji Uozumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200348186
    Abstract: Provided are a thermistor which can have a satisfactory thermistor film using a metal substrate as well as a high humidity resistance and heat resistance; a method for producing the same; and a thermistor sensor. The thermistor according to the present invention includes a metal substrate 2, an insulating base film 3 formed on the metal substrate, and a thermistor film 4 formed on the insulating base film, wherein the insulating base film is formed so as to fill the irregularities on the surface of the metal substrate where the surface roughness of the insulating base film is lower than that of the metal substrate. In the method for producing this thermistor includes the steps of: applying polysilazane on the metal substrate; drying the polysilazane to form the insulating base film of SiOx containing nitrogen; and depositing the thermistor film on the insulating base film.
    Type: Application
    Filed: January 11, 2019
    Publication date: November 5, 2020
    Inventors: Shunpei Suzuki, Toshiaki Fujita, Norihisa Chitose, Gakuji Uozumi, Kazuta Takeshima, Noriaki Nagatomo
  • Patent number: 10488272
    Abstract: A temperature sensor having excellent humidity resistance and responsivity is provided. The temperature sensor according to the present invention includes an insulating substrate 2; a thin film thermistor portion 3 made of a thermistor material formed on either surface of the insulating substrate; and an opposed electrode pair 5 consisting of a pair of opposed electrodes 4 formed so as to be opposed to each other on at least either one of the top and bottom surfaces of the thin film thermistor portion, wherein a plurality of the opposed electrode pairs are provided and connected to one another in series. As a result, a voltage applied to a unit thermistor composed of one opposed electrode pair becomes 1/n fold, which can suppress the electrode corrosion due to humidity load.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: November 26, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Gakuji Uozumi, Noriaki Nagatomo
  • Publication number: 20190078942
    Abstract: A temperature sensor having excellent humidity resistance and responsivity is provided. The temperature sensor according to the present invention includes an insulating substrate 2; a thin film thermistor portion 3 made of a thermistor material formed on either surface of the insulating substrate; and an opposed electrode pair 5 consisting of a pair of opposed electrodes 4 formed so as to be opposed to each other on at least either one of the top and bottom surfaces of the thin film thermistor portion, wherein a plurality of the opposed electrode pairs are provided and connected to one another in series. As a result, a voltage applied to a unit thermistor composed of one opposed electrode pair becomes 1/n fold, which can suppress the electrode corrosion due to humidity load.
    Type: Application
    Filed: January 23, 2017
    Publication date: March 14, 2019
    Inventors: Gakuji Uozumi, Noriaki Nagatomo
  • Patent number: 9435691
    Abstract: A lightweight infrared sensor that detects a temperature at a portion spaced apart from a circuit substrate with high accuracy, is installed on the circuit substrate easily and stably, and includes an insulating film; a first and a second heat sensitive elements are disposed on one surface of the insulating film separately; a first conductive film on the insulating film that is connected to the first heat sensitive element; a second conductive film connected to the second heat sensitive element; an infrared reflection film on the other surface of the insulating film so as to face the second heat sensitive element; a plurality of terminal electrodes formed on one end of the insulating film and fitted into an external connector; an edge reinforcing plate adhered to one end of one surface of the insulating film; and a mounting hole that is formed on the other end.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: September 6, 2016
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kenzo Nakamura, Mototaka Ishikawa, Gakuji Uozumi
  • Patent number: 9279729
    Abstract: A lightweight infrared sensor which is readily and stably erected to a substrate, the infrared sensor includes an insulating film; a first and second heat sensitive element are disposed on one surface of the insulating film separately; a first and second conductive film on one surface of the insulating film and are respectively connected to the first and the second heat sensitive element; an infrared reflection film on the other surface of the insulating film so as to face the second heat sensitive element; a reinforcing plate on which a sensor part window corresponding to a sensor part is formed and which is adhered to the insulating film; and a first and a second terminal electrode are respectively connected to the first and the second wiring film and formed on the edge of the insulating film.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: March 8, 2016
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kenzo Nakamura, Mototaka Ishikawa, Gakuji Uozumi
  • Patent number: 9269481
    Abstract: Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: February 23, 2016
    Assignee: DIAMET CORPORATION
    Inventors: Muneaki Watanabe, Ryoji Nakayama, Gakuji Uozumi
  • Publication number: 20140061468
    Abstract: Provided is a lightweight infrared sensor which is readily and stably erected to a substrate. The infrared sensor includes an insulating film; a first and a second heat sensitive element are disposed on one surface of the insulating film separately; a first and second conductive film on one surface of the insulating film and are respectively connected to the first and the second heat sensitive element; and an infrared reflection film on the other surface of the insulating film so as to face the second heat sensitive element. The infrared sensor further includes a reinforcing plate on which a sensor part window corresponding to a sensor part is formed and which is adhered to the insulating film; and a first and a second terminal electrode are respectively connected to the first and the second wiring film, are formed on the edge of the insulating film.
    Type: Application
    Filed: March 21, 2012
    Publication date: March 6, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kenzo Nakamura, Mototaka Ishikawa, Gakuji Uozumi
  • Publication number: 20140010262
    Abstract: Provided is a lightweight infrared sensor that detects a temperature at a portion spaced apart from a circuit substrate with high accuracy, and is installed on the circuit substrate easily and stably. The infrared sensor includes an insulating film; a first and a second heat sensitive elements are disposed on one surface of the insulating film separately; a first conductive film on the insulating film that is connected to the first heat sensitive element; a second conductive film connected to the second heat sensitive element; an infrared reflection film on the other surface of the insulating film so as to face the second heat sensitive element; a plurality of terminal electrodes formed on one end of the insulating film and fitted into an external connector; an edge reinforcing plate adhered to one end of one surface of the insulating film; and a mounting hole that is formed on the other end.
    Type: Application
    Filed: March 22, 2012
    Publication date: January 9, 2014
    Applicant: Mitsubishi Materials Corporation
    Inventors: Kenzo Nakamura, Mototaka Ishikawa, Gakuji Uozumi
  • Patent number: 8481178
    Abstract: Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: July 9, 2013
    Assignee: Diamet Corporation
    Inventors: Muneaki Watanabe, Ryoji Nakayama, Gakuji Uozumi
  • Patent number: 8409371
    Abstract: A method for producing a soft magnetic metal powder coated with a Mg-containing oxide film, comprising the steps of adding and mixing a Mg powder with a soft magnetic metal powder which has been subjected to heating treatment in an oxidizing atmosphere at a temperature of 40 to 500° C. to obtain a mixed powder, and heating the mixed powder at a temperature of 150 to 1,100° C. in an inert gas or vacuum atmosphere under a pressure of 1×10?12 to 1×10?1 MPa, while optionally tumbling; and a method for producing a composite soft magnetic material from the soft magnetic metal powder coated with a Mg-containing oxide film.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: April 2, 2013
    Assignee: Diamet Corporation
    Inventors: Muneaki Watanabe, Ryoji Nakayama, Gakuji Uozumi
  • Publication number: 20120138844
    Abstract: Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.
    Type: Application
    Filed: September 8, 2011
    Publication date: June 7, 2012
    Applicant: DIAMET CORPORATION
    Inventors: Muneaki Watanabe, Ryoji Nakayama, Gakuji Uozumi
  • Publication number: 20120070567
    Abstract: A method for producing a soft magnetic metal powder coated with a Mg-containing oxide film, comprising the steps of adding and mixing a Mg powder with a soft magnetic metal powder which has been subjected to heating treatment in an oxidizing atmosphere at a temperature of 40 to 500° C. to obtain a mixed powder, and heating the mixed powder at a temperature of 150 to 1,100° C. in an inert gas or vacuum atmosphere under a pressure of 1×10?12 to 1×10?1 MPa, while optionally tumbling; and a method for producing a composite soft magnetic material from the soft magnetic metal powder coated with a Mg-containing oxide film.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 22, 2012
    Applicant: DIAMET Corporation
    Inventors: Muneaki Watanabe, Ryoji Nakayama, Gakuji Uozumi
  • Patent number: 7622012
    Abstract: A flat soft magnetic metal powder is provided that includes: Ni in the range of 60 to 90 mass %, one or more kinds of Nb, V, and Ta in the range of 0.05 to 20 mass % in total (0.05 to 19.95 mass % when Mo is added thereto), Mo in the range of 0.05 to 10 mass % if necessary, one or two kinds of Al and Mn in the range of 0.01 to 1 mass % in total if necessary, and the balance including Fe; an average grain size of 30 to 150 ?m and an aspect ratio (average grain size/average thickness) of 5 to 500; and a flat face. Here, with a peak intensity of a face index (220) in an X-ray diffraction pattern I220 and a peak intensity of a face index (111) I111, a peak intensity ratio I220/I111 is in the range of 0.1 to 10.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: November 24, 2009
    Assignee: Mitsubishi Materials Corporation
    Inventors: Gakuji Uozumi, Ryoji Nakayama, Yasushi Nayuki
  • Patent number: 7575645
    Abstract: The invention provides an Fe—Ni—Mo soft magnetic flaky powder having a component composition of, in percent by mass, Ni: 60 to 90%, Mo: 0.05 to 1.95%, and the balance of Fe and unavoidable impurities, and a flat surface of an average particle size of 30 to 150 ?m, and an aspect ratio (average particle size /average thickness) of 5 to 500; and having a peak intensity ratio I200/I111 within a range between 0.43 and 10, where I200 is the peak height of the face index (200) and I111 is the peak height of the face index (111), in an X-ray diffraction pattern measured in such a manner that the plane including the X-ray incident direction and the diffraction direction is perpendicular to the flat surface of the soft magnetic flaky powder, and the angle between the incident direction and the flat surface is equal to the angle between the diffraction direction and the flat surface.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: August 18, 2009
    Assignees: Mitsubishi Materials Corporation, JEMCO Inc.
    Inventors: Kazunori Igarashi, Gakuji Uozumi, Yasushi Nayuki, Ryoji Nakayama
  • Publication number: 20090174512
    Abstract: Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.
    Type: Application
    Filed: November 2, 2005
    Publication date: July 9, 2009
    Applicant: Mitsubishi Materials PMG Corporation
    Inventors: Muneaki Watanabe, Ryoji Nakayama, Gakuji Uozumi
  • Patent number: 7497914
    Abstract: The invention provides an Fe—Ni—Mo soft magnetic flaky powder having a component composition of, in percent by mass, Ni: 60 to 90%, Mo: 0.05 to 1.95%, and the balance of Fe and unavoidable impurities, and a flat surface of an average particle size of 30 to 150 ?m, and an aspect ratio (average particle size /average thickness) of 5 to 500; and having a peak intensity ratio I200/I111 within a range between 0.43 and 10, where I200 is the peak height of the face index (200) and I111 is the peak height of the face index (111), in an X-ray diffraction pattern measured in such a manner that the plane including the X-ray incident direction and the diffraction direction is perpendicular to the flat surface of the soft magnetic flaky powder, and the angle between the incident direction and the flat surface is equal to the angle between the diffraction direction and the flat surface.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: March 3, 2009
    Assignees: Mitsubishi Materials Corporation, Jemco Inc.
    Inventors: Kazunori Igarashi, Gakuji Uozumi, Yasushi Nayuki, Ryoji Nakayama
  • Publication number: 20090025830
    Abstract: A flat soft magnetic metal powder is provided that includes: Ni in the range of 60 to 90 mass %, one or more kinds of Nb, V, and Ta in the range of 0.05 to 20 mass % in total (0.05 to 19.95 mass % when Mo is added thereto), Mo in the range of 0.05 to 10 mass % if necessary, one or two kinds of Al and Mn in the range of 0.01 to 1 mass % in total if necessary, and the balance including Fe; an average grain size of 30 to 150 ?m and an aspect ratio (average grain size/average thickness) of 5 to 500; and a flat face. Here, with a peak intensity of a face index (220) in an X-ray diffraction pattern I220 and a peak intensity of a face index (111) I111, a peak intensity ratio I220/I111 is in the range of 0.1 to 10.
    Type: Application
    Filed: February 9, 2006
    Publication date: January 29, 2009
    Applicant: Mitsubishi Materials Corporation
    Inventors: Gakuji Uozumi, Ryoji Nakayama, Yasushi Nayuki
  • Publication number: 20080003126
    Abstract: A method for producing a soft magnetic metal powder coated with a Mg-containing oxide film, comprising the steps of adding and mixing a Mg powder with a soft magnetic metal powder which has been subjected to heating treatment in an oxidizing atmosphere at a temperature of 40 to 500° C. to obtain a mixed powder, and heating the mixed powder at a temperature of 150 to 1,100° C. in an inert gas or vacuum atmosphere under a pressure of 1×10?12 to 1×10?1 MPa, while optionally tumbling; and a method for producing a composite soft magnetic material from the soft magnetic metal powder coated with a Mg-containing oxide film.
    Type: Application
    Filed: September 6, 2005
    Publication date: January 3, 2008
    Applicant: Mitsubishi Materials PMG Corporation
    Inventors: Muneaki Watanabe, Ryoji Nakayama, Gakuji Uozumi
  • Publication number: 20070131311
    Abstract: The invention provides an Fe—Ni—Mo soft magnetic flaky powder having a component composition of, in percent by mass, Ni: 60 to 90%, Mo: 0.05 to 1.95%, and the balance of Fe and unavoidable impurities, and a flat surface of an average particle size of 30 to 150 ?m, and an aspect ratio (average particle size /average thickess) of 5 to 500; and having a peak intensity ratio I200/I111 within a range between 0.43 and 10, where I200 is the peak height of the face index (200) and I111 is the peak height of the face index (111), in an X-ray diffraction pattern measured in such a manner that the plane including the X-ray incident direction and the diffraction direction is perpendicular to the flat surface of the soft magnetic flaky powder, and the angle between the incident direction and the flat surface is equal to the angle between the diffraction direction and the flat surface.
    Type: Application
    Filed: August 4, 2004
    Publication date: June 14, 2007
    Inventors: Kazunori Igarashi, Gakuji Uozumi, Yasushi Nayuki, Ryoji Nakayama
  • Patent number: 6963729
    Abstract: An antenna device of an interrogator which constitutes an automatic identification system by exchanging information with an IC tag attached to an object to be identified by electromagnetic coupling is disclosed. The antenna device comprises an antenna element, and a capacitor connected in series to the antenna element and having a variable capacitance to maintain a predetermined resonance frequency. The predetermined resonance frequency is maintained by switching taps on an antenna coil. Alternatively, the predetermined resonance frequency is maintained by switching taps on a tapped inductor or by a variable inductor.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: November 8, 2005
    Assignee: Mitsubishi Materials Corporation
    Inventor: Gakuji Uozumi