Patents by Inventor Galder Cristobal-Azkarate

Galder Cristobal-Azkarate has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8765485
    Abstract: Various aspects of the present invention relates to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction. In still another aspect, the invention relates to systems and methods for sorting droplets, e.g., by causing droplets to move to certain regions within a fluidic system. Examples include using electrical interactions (e.g., charges, dipoles, etc.) or mechanical systems (e.g., fluid displacement) to sort the droplets.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: July 1, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Darren Roy Link, David A. Weitz, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Publication number: 20100163109
    Abstract: Microfluidic structures and methods for manipulating fluids and reactions are provided. Such structures and methods may involve positioning fluid samples, e.g., in the form of droplets, in a carrier fluid (e.g., an oil, which may be immiscible with the fluid sample) in predetermined regions in a microfluidic network. In some embodiments, positioning of the droplets can take place in the order in which they are introduced into the microfluidic network (e.g., sequentially) without significant physical contact between the droplets. Because of the little or no contact between the droplets, there may be little or no coalescence between the droplets. Accordingly, in some such embodiments, surfactants are not required in either the fluid sample or the carrier fluid to prevent coalescence of the droplets. Structures and methods described herein also enable droplets to be removed sequentially from the predetermined regions.
    Type: Application
    Filed: February 6, 2008
    Publication date: July 1, 2010
    Applicant: Brandeis University
    Inventors: Seth Fraden, Galder Cristobal-Azkarate
  • Publication number: 20100105866
    Abstract: The present invention relates generally to microfluidic structures, and more specifically, to microfluidic structures and methods including microreactors for manipulating fluids and reactions. In some embodiments, structures and methods for manipulating many (e.g., 1000) fluid samples, i.e., in the form of droplets, are described. Processes such as diffusion, evaporation, dilution, and precipitation can be controlled in each fluid sample. These methods also enable conditions within the fluid samples (e.g., concentration) to be controlled. Manipulation of fluid samples can be useful for a variety of applications, including testing for reaction conditions, e.g., in crystallization, chemical, and biological assays.
    Type: Application
    Filed: June 1, 2009
    Publication date: April 29, 2010
    Applicants: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Darren Roy Link, Galder Cristobal-Azkarate, Jung uk Shim, David A. Weitz
  • Patent number: 7556776
    Abstract: The present invention relates generally to microfluidic structures, and more specifically, to microfluidic structures and methods including microreactors for manipulating fluids and reactions. In some embodiments, structures and methods for manipulating many (e.g., 1000) fluid samples, i.e., in the form of droplets, are described. Processes such as diffusion, evaporation, dilution, and precipitation can be controlled in each fluid sample. These methods also enable conditions within the fluid samples (e.g., concentration) to be controlled. Manipulation of fluid samples can be useful for a variety of applications, including testing for reaction conditions, e.g., in crystallization, chemical, and biological assays.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 7, 2009
    Assignees: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Darren Roy Link, Galder Cristobal-Azkarate, Jung uk Shim, David A. Weitz
  • Publication number: 20070052781
    Abstract: The present invention relates generally to microfluidic structures, and more specifically, to microfluidic structures and methods including microreactors for manipulating fluids and reactions. In some embodiments, structures and methods for manipulating many (e.g., 1000) fluid samples, i.e., in the form of droplets, are described. Processes such as diffusion, evaporation, dilution, and precipitation can be controlled in each fluid sample. These methods also enable conditions within the fluid samples (e.g., concentration) to be controlled. Manipulation of fluid samples can be useful for a variety of applications, including testing for reaction conditions, e.g., in crystallization, chemical, and biological assays.
    Type: Application
    Filed: September 8, 2005
    Publication date: March 8, 2007
    Applicants: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Darren Link, Galder Cristobal-Azkarate, Jung Shim, David Weitz
  • Publication number: 20070003442
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Application
    Filed: February 23, 2006
    Publication date: January 4, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Darren Link, David Weitz, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn