Patents by Inventor Gale S. Petrich

Gale S. Petrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7680383
    Abstract: An optical modulator is provided. The optical modulator includes a ridge-shaped active region comprising a plurality of alternating high and low index layers. The ridge-shaped active region is used to confine a selective optical mode for optical modulation. A plurality of oxidized layers positioned so as to confine the selective optical mode in the middle region of the ridge-shaped active region. The oxidized layers enable the optical modulator to withstand high operating voltages both in reverse and forward bias without concern of breakdown or carrier loss.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: March 16, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie A. Kolodziejski, Gale S. Petrich, Orit Shamir
  • Publication number: 20100054656
    Abstract: An optical modulator is provided. The optical modulator includes a ridge-shaped active region comprising a plurality of alternating high and low index layers. The ridge-shaped active region is used to confine a selective optical mode for optical modulation. A plurality of oxidized layers positioned so as to confine the selective optical mode in the middle region of the ridge-shaped active region. The oxidized layers enable the optical modulator to withstand high operating voltages both in reverse and forward bias without concern of breakdown or carrier loss.
    Type: Application
    Filed: August 26, 2008
    Publication date: March 4, 2010
    Inventors: Leslie A. Kolodziejski, Gale S. Petrich, Orit Shamir
  • Patent number: 7260287
    Abstract: A nano-electromechanical optical switch includes an input optical waveguide that is provided with an optical signal. At least two output optical waveguides are coupled to the input optical waveguide. The deflection of the input optical waveguide aligns with one of either of the two output optical waveguides so as to allow transmission of the optical signal to one of either of the two output optical waveguides.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: August 21, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Solomon Assefa, Reginald E. Bryant, Alexei A. Erchak, Shanhui Fan, Erich P. Ippen, John D. Joannopoulos, Steven G. Johnson, Leslie A. Kolodziejski, Elefterios Lidorikis, Gale S. Petrich, Michelle L. Povinelli
  • Patent number: 7248615
    Abstract: A microcavity structure includes a first waveguide that includes a first photonic crystal microcavity. A second waveguide includes a second photonic crystal microcavity. A microcavity active region is created by overlapping the first and second microcavities.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: July 24, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Solomon Assefa, Leslie A. Kolodziekski, Gale S. Petrich
  • Patent number: 7072547
    Abstract: A coupling element includes a first stage having a dielectric waveguide that is transitioned to a waveguide having a sequence of resonators with a fixed period. A second stage transitions the waveguide to a photonic crystal waveguide by gradually bringing closer at an angle the cladding bulk of the photonic crystal to the waveguide.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: July 4, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Solomon Assefa, Peter Bienstman, Gale S. Petrich, Alexei A. Erchak, Steven G. Johnson, Leslie A. Kolodziejski, John D. Joannopoulos
  • Patent number: 6888973
    Abstract: A photonic circuit includes a tunable drop filter arrangement that includes a plurality of resonators. The drop filter arrangement is tuned to remove a selected frequency from an input data stream from a waveguide. A wavelength sensor coupled to the drop filter to monitor the selected frequency to which the drop filter arrangement has been tuned. A tunable laser presents a new signal of a defined frequency indicative of a signal to be added to the input data stream. A modulator coupled to the tunable laser for receiving the new signal and forming a modulated signal. An add filter arrangement coupled to the modulator for receiving the modulated signal and adding the modulated signal to the data stream.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: May 3, 2005
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Kolodziejski, Gale S. Petrich
  • Publication number: 20040109644
    Abstract: A coupling element includes a first stage having a dielectric waveguide that is transitioned to a waveguide having a sequence of resonators with a fixed period. A second stage transitions the waveguide to a photonic crystal waveguide by gradually bringing closer at an angle the cladding bulk of the photonic crystal to the waveguide.
    Type: Application
    Filed: June 18, 2003
    Publication date: June 10, 2004
    Inventors: Solomon Assefa, Peter Bienstman, Gale S. Petrich, Alexei A. Erchak, Steven G. Johnson, Leslie A. Kolodziejski, John D. Joannopoulos
  • Publication number: 20030128922
    Abstract: A photonic circuit includes a tunable drop filter arrangement that includes a plurality of resonators. The drop filter arrangement is tuned to remove a selected frequency from an input data stream from a waveguide. A wavelength sensor coupled to the drop filter to monitor the selected frequency to which the drop filter arrangement has been tuned. A tunable laser presents a new signal of a defined frequency indicative of a signal to be added to the input data stream. A modulator coupled to the tunable laser for receiving the new signal and forming a modulated signal. An add filter arrangement coupled to the modulator for receiving the modulated signal and adding the modulated signal to the data stream.
    Type: Application
    Filed: November 14, 2002
    Publication date: July 10, 2003
    Inventors: Leslie Kolodziejski, Gale S. Petrich
  • Patent number: 6574383
    Abstract: An input light-coupling device comprising a dielectric layer containing a pattern of dielectric contrast distributed in at least two dimensions. The pattern of dielectric contrast, which may or may not be periodic, is designed to facilitate coupling to the dielectric layer of electromagnetic radiation. The electromagnetic radiation may be propagating within a surrounding medium of lower dielectric constant than that of said dielectric layer, input at directions including normal incidence from which light cannot typically couple to the dielectric layer without the presence of the pattern of dielectric contrast. The input light may constitute an optical signal propagating in an optical fiber or in free space. Light that is in-coupled may be directed in as many directions as dictated by the symmetry of the pattern of dielectric contrast. The dielectric layer may contain output waveguides surrounding the input coupling structure.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: June 3, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Alexei A. Erchak, Shanhui Fan, Erich P. Ippen, John D. Joannopoulos, Leslie A. Kolodziejski, Gale S. Petrich, Daniel J. Ripin
  • Patent number: 6424763
    Abstract: A tunable electromagnetic field frequency filter having an input waveguide which carries a signal including at least one desired frequency, and an output waveguide. A resonator-system is coupled to the input and output waveguides and is operable for the selective transfer of the at least one desired frequency to the output waveguide. The resonator-system supports at least two system modes, and includes at least three reflectors with at least two different reflectivity spectra. At least one of the reflectivity spectra is tuned such that at least two of the system-modes have substantially the same frequency when the transfer occurs substantially.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: July 23, 2002
    Assignee: Massachusetts Institute of Technology
    Inventors: Pierre R. Villeneuve, Shanhui Fan, Gale S. Petrich, Leslie A. Kolodziejski, John D. Joannopoulos