Patents by Inventor Galen D. Cauble

Galen D. Cauble has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10942119
    Abstract: A system and method are provided for receiving light that has traveled from an optical source through an atmosphere along a distance. The system includes: a receiver lens system having an aperture and being arranged to receive the light from the optical source; a beam splitter; an imaging lens; an image processing component; a photodetector system; and a refractive index structure parameter component. The photodetector system outputs data associated with averaged scintillation data of the aperture. The image processing component generates a normalized covariance curve based on a first portion of the received light. The refractive index structure parameter component generates a refractive index structure parameter, Cn2, of the atmosphere along the distance based on the data associated with averaged scintillation data of the aperture and the normalized covariance curve.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: March 9, 2021
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: David T. Wayne, Galen D. Cauble
  • Publication number: 20190277758
    Abstract: A system and method are provided for receiving light that has traveled from an optical source through an atmosphere along a distance. The system includes: a receiver lens system having an aperture and being arranged to receive the light from the optical source; a beam splitter; an imaging lens; an image processing component; a photodetector system; and a refractive index structure parameter component. The photodetector system outputs data associated with averaged scintillation data of the aperture. The image processing component generates a normalized covariance curve based on a first portion of the received light. The refractive index structure parameter component generates a refractive index structure parameter, Cn2, of the atmosphere along the distance based on the data associated with averaged scintillation data of the aperture and the normalized covariance curve.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 12, 2019
    Applicant: United States of America as represented by the Secretary of the Navy
    Inventors: David T. Wayne, Galen D. Cauble
  • Patent number: 9959612
    Abstract: Methods for characterizing atmospheric turbulence along an optical path from a laser transmitter to a laser receiver can include the steps of counting the number of laser speckles at the receiver imaging plane, and then finding Fried's parameter r0 using the counting result to characterize the turbulence along the path. Before counting speckles, images at the receiver image plane can be preprocessed by capturing the images. The captured images at the image plane can then be blurred and a threshold can be chosen so that only certain pixels in the image are further processed. The thresholding can be via Otsu's methods or via variants of a Gaussian fit. Kostelec's method can then be used to count speckles in the portions of the image that have made it through the thresholding step. Other counting methods could be used. Fried's can then be found using the speckle count.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 1, 2018
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Galen D. Cauble, David T. Wayne
  • Publication number: 20180061039
    Abstract: Methods for characterizing atmospheric turbulence along an optical path from a laser transmitter to a laser receiver can include the steps of counting the number of laser speckles at the receiver imaging plane, and then finding Fried's parameter r0 using the counting result to characterize the turbulence along the path. Before counting speckles, images at the receiver image plane can be preprocessed by capturing the images. The captured images at the image plane can then be blurred and a threshold can be chosen so that only certain pixels in the image are further processed. The thresholding can be via Otsu's methods or via variants of a Gaussian fit. Kostelec's method can then be used to count speckles in the portions of the image that have made it through the thresholding step. Other counting methods could be used. Fried's can then be found using the speckle count.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Applicant: United States of America, as Represented by the Secretary of the Navy
    Inventors: Galen D. Cauble, David T. Wayne