Patents by Inventor Ganapathy Sankar

Ganapathy Sankar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11976892
    Abstract: A system includes an active micro-electric mechanical system (MEMS) cooling system and a drive system. The MEMS cooling system includes cooling element(s) that direct fluid toward a surface of heat-generating structure(s) when driven to vibrate by a driving signal having a frequency and an input voltage. The drive system is coupled to the active MEMS cooling system and provides the driving signal. The drive system includes a power source and a feedback controller providing a feedback signal corresponding to a proximity to a resonant state of the at least one cooling element. The drive system adjusts at least one of the frequency and the input voltage based on the feedback signal such that the frequency corresponds to the resonant state of the cooling element(s). The input voltage does not exceed a maximum safe operating voltage for the cooling element(s).
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: May 7, 2024
    Assignee: Frore Systems Inc.
    Inventors: Ganapathy Sankar, Shekhar Halakatti, Suchitra Ramesh, Suryaprakash Ganti, Prabhu Sathyamurthy, Seshagiri Rao Madhavapeddy
  • Publication number: 20230422430
    Abstract: A system including a plurality of cooling cells and a switching and control module is described. The cooling cells including cooling elements configured to be actuated to induce vibrational motion to drive a fluid toward a heat-generating structure. The switching and control module is coupled to the cooling elements and provides drive signals to the cooling elements based on at least one drive signal input. Each of the drive signals has a frequency corresponding to a cooling element. The frequency of the drive signal corresponds to a resonant state of the cooling element.
    Type: Application
    Filed: September 5, 2023
    Publication date: December 28, 2023
    Inventors: Ganapathy Sankar, Marc Mignard, Shekhar Halakatti, Suchitra Ramesh, Suryaprakash Ganti, Seshagiri Rao Madhavapeddy, Prabhu Sathyamurthy
  • Patent number: 11785739
    Abstract: A system including a plurality of cooling cells and a switching and control module is described. The cooling cells including cooling elements configured to be actuated to induce vibrational motion to drive a fluid toward a heat-generating structure. The switching and control module is coupled to the cooling elements and provides drive signals to the cooling elements based on at least one drive signal input. Each of the drive signals has a frequency corresponding to a cooling element. The frequency of the drive signal corresponds to a resonant state of the cooling element.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: October 10, 2023
    Assignee: Frore Systems Inc.
    Inventors: Ganapathy Sankar, Marc Mignard, Shekhar Halakatti, Suchitra Ramesh, Suryaprakash Ganti, Seshagiri Rao Madhavapeddy, Prabhu Sathyamurthy
  • Publication number: 20230012794
    Abstract: A cooling system is described. The cooling system includes a support structure, a cooling element, and drive electronics. The cooling element has a central axis and is supported by the support structure at the central axis. First and second portions of the cooling element are on first and second sides of the central axis and unpinned. The first and second portions of the cooling element undergo vibrational motion when actuated to drive a fluid toward a heat-generating structure. The cooling element further has first and second piezoelectrics having opposite polarizations. The first piezoelectric is part of the first portion of the cooling element. The second piezoelectric is part of the second portion of the cooling element. The drive electronics drive the first and second portions of the cooling element using a single drive signal.
    Type: Application
    Filed: July 8, 2022
    Publication date: January 19, 2023
    Inventors: Suryaprakash Ganti, Ganapathy Sankar, Vikram Mukundan, Ananth Saran Yalamarthy
  • Publication number: 20220187033
    Abstract: A system includes an active micro-electric mechanical system (MEMS) cooling system and a drive system. The MEMS cooling system includes cooling element(s) that direct fluid toward a surface of heat-generating structure(s) when driven to vibrate by a driving signal having a frequency and an input voltage. The drive system is coupled to the active MEMS cooling system and provides the driving signal. The drive system includes a power source and a feedback controller providing a feedback signal corresponding to a proximity to a resonant state of the at least one cooling element. The drive system adjusts at least one of the frequency and the input voltage based on the feedback signal such that the frequency corresponds to the resonant state of the cooling element(s). The input voltage does not exceed a maximum safe operating voltage for the cooling element(s).
    Type: Application
    Filed: December 15, 2021
    Publication date: June 16, 2022
    Inventors: Ganapathy Sankar, Shekhar Halakatti, Suchitra Ramesh, Suryaprakash Ganti, Prabhu Sathyamurthy, Seshagiri Rao Madhavapeddy
  • Publication number: 20220087058
    Abstract: A system including a plurality of cooling cells and a switching and control module is described. The cooling cells including cooling elements configured to be actuated to induce vibrational motion to drive a fluid toward a heat-generating structure. The switching and control module is coupled to the cooling elements and provides drive signals to the cooling elements based on at least one drive signal input. Each of the drive signals has a frequency corresponding to a cooling element. The frequency of the drive signal corresponds to a resonant state of the cooling element.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 17, 2022
    Inventors: Ganapathy Sankar, Marc Mignard, Shekhar Halakatti, Suchitra Ramesh, Suryaprakash Ganti, Seshagiri Rao Madhavapeddy, Prabhu Sathyamurthy
  • Patent number: 11018532
    Abstract: A wireless power charger (WPC) integrated into a charging pad (CP) includes a wireless power transmitter (WPT), a location sense mechanism (LSM), a transport mechanism (TM) and a Central Control Unit (CCU). The LSM discovers and conveys the position of a portable device to the CCU when the device is placed on the CP to have its battery wirelessly charged. The LSM uses RF signaling and other capabilities in wireless connectivity standards to detect location of device. With information from the LSM, the CCU, via the TM, moves the WPTM in close proximity to the device. Once at the device position, the WPTM senses the location of the receiver coil in the device, adjusts its position via the TM to gain strong alignment and provides power wirelessly. When charging is complete or if the device is removed from the charging pad, the WPTM returns to its home-base location.
    Type: Grant
    Filed: February 24, 2019
    Date of Patent: May 25, 2021
    Assignee: WIPQTUS INC.
    Inventor: Ganapathy Sankar
  • Publication number: 20200274404
    Abstract: A wireless power charger (WPC) integrated into a charging pad (CP) includes a wireless power transmitter (WPT), a location sense mechanism (LSM), a transport mechanism (TM) and a Central Control Unit (CCU). The LSM discovers and conveys the position of a portable device to the CCU when the device is placed on the CP to have its battery wirelessly charged. The LSM uses RF signaling and other capabilities in wireless connectivity standards to detect location of device. With information from the LSM, the CCU, via the TM, moves the WPTM in close proximity to the device. Once at the device position, the WPTM senses the location of the receiver coil in the device, adjusts its position via the TM to gain strong alignment and provides power wirelessly. When charging is complete or if the device is removed from the charging pad, the WPTM returns to its home-base location.
    Type: Application
    Filed: February 24, 2019
    Publication date: August 27, 2020
    Inventor: Ganapathy Sankar
  • Patent number: 10581272
    Abstract: A wireless power system (WPS) has a wireless power transmitter (WPT) that appraises an input power available to a power inverter from one or more input power sources. The WPT comprises the power inverter that wirelessly transmits power to a wireless power receiver (WCR) of the WPS, and a power appraiser circuit (PAC). The PAC ascertains maximum input power available to the power inverter from the input power sources. The PAC includes a variable load connected to a path carrying the input power to the power inverter or one or more input pins that receive power ratings of the input power sources that indicate available maximum input power from the input power sources. The ascertaining of maximum input power available to the power inverter from the input power sources appraises the input power available to the power inverter. The WCR receives information representing maximum power deliverable by the WPT.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: March 3, 2020
    Assignee: WIPQTUS INC.
    Inventor: Ganapathy Sankar
  • Patent number: 10122203
    Abstract: A higher power wireless power transmitter (HPWPT) including a first, second and third circuit and a transmit coil for wirelessly powering a lower power wireless power receiver (LPWPR) is provided. The first circuit is a switch network. The second circuit is variable impedance network and/or a tuning network. The third circuit is a control logic circuit configured to change the input voltage source or topology of the first circuit, to change the impedance and/or tuning characteristics of the second circuit, to select the transmit coil, vary frequency or duty cycle of the PWM signal or any combination thereof. The change in the input voltage or topology of first circuit or change in impedance or tuning characteristics of second circuit or change in the transmit coil used or the applied constraints on the frequency and duty cycle of the PWM signal constrain the maximum power transmitted by the HPWPT to LPWPR.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: November 6, 2018
    Assignee: WIPQTUS INC.
    Inventor: Ganapathy Sankar
  • Patent number: 10122220
    Abstract: A wireless power transmitter (WPT) including a first, second, third circuit and a transmit coil for wirelessly delivering power to a wireless power receiver (WPR) including a receiver coil, rectifier, impedance network, protection circuitry, control logic, modulator/demodulator and ADC is provided. A method that enables WPT and WPR to deliver the required power to the WPR's downstream load in planar, orthogonal and intermediate modes of WPR placement on WPT is provided. The WPR is integrated into the strap/frame or in the vital area of the device. To avoid a heated metal object safety issue, the WPT implements a metal object detect algorithm to detect metal objects and terminate transmission of power. To protect their circuitry from induced voltage spikes in excess of acceptable levels, the WPR includes a simple protection circuitry that naturally turns on and siphons out the excess power when the acceptable threshold levels are exceeded.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: November 6, 2018
    Assignee: WIPQTUS INC.
    Inventor: Ganapathy Sankar
  • Patent number: 10044228
    Abstract: A method and system for self-regulating wireless power transmitted to a wireless power receiver (WPR) is provided. An auto-tuning network is operably coupled within the WPR. The auto-tuning network comprises an impedance network that dynamically increases, decreases, or maintains amount of the received wirelessly transmitted power by detecting changes in a rectifier load disposed in the WPR and/or in an output voltage of the rectifier in the WPR. The auto-tuning network self-regulates the wireless power received from a wireless power transmitter (WPT) obviating the need for conventional communication messages. The WPT is hence free from a modulator/demodulator block and an out-of-band communication block and can operate over a limited operating range to enable simpler design for passing EMC regulation.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: August 7, 2018
    Assignee: WIPQTUS INC.
    Inventor: Ganapathy Sankar
  • Patent number: 10038339
    Abstract: A dual mode wireless power receiver (DMWPR) selectively applying a received power to a load device and utilizing at least a part of the power to power-up, communicate, and charge a secondary wireless power receiver (SWPR) is provided. The DMWPR includes a first circuitry having an impedance network, a switch network, a filter capacitor, and one or more switches, and a second circuitry having a security engine, a control logic circuit, and a modulator/demodulator circuit. The first circuitry receives power in charging mode and transmits power in communication mode. The second circuitry configures the first circuitry to allow receipt and transmittal of power, receives and interprets data from SWPR in identified wireless power protocol, and based on the type of SWPR authenticates, decrypts and encrypts data transfer between DMWPR and SWPR, and receives and executes on a request from SWPR to perform a function associated with transmitted power.
    Type: Grant
    Filed: April 10, 2016
    Date of Patent: July 31, 2018
    Assignee: WIPQTUS INC.
    Inventor: Ganapathy Sankar
  • Publication number: 20170222466
    Abstract: A higher power wireless power transmitter (HPWPT) including a first, second and third circuit and a transmit coil for wirelessly powering a lower power wireless power receiver (LPWPR) is provided. The first circuit is a switch network. The second circuit is variable impedance network and/or a tuning network. The third circuit is a control logic circuit configured to change the input voltage source or topology of the first circuit, to change the impedance and/or tuning characteristics of the second circuit, to select the transmit coil, vary frequency or duty cycle of the PWM signal or any combination thereof. The change in the input voltage or topology of first circuit or change in impedance or tuning characteristics of second circuit or change in the transmit coil used or the applied constraints on the frequency and duty cycle of the PWM signal constrain the maximum power transmitted by the HPWPT to LPWPR.
    Type: Application
    Filed: September 12, 2016
    Publication date: August 3, 2017
    Inventor: Ganapathy Sankar
  • Patent number: 9680337
    Abstract: A multi-mode multi-coupling multi-protocol wireless power transmitter (WPT) and its embodiments transmit power to a wireless power receiver (WPR) in a power transfer mode (PTM) and a wireless power protocol (WPP) of the WPR. A first circuit of the WPT includes inductors or capacitors emanating power via a magnetic field or electric field PTM respectively. The WPT sequentially parses a test condition to identify a PTM, a power coupling linkage (PCL) between the WPT and the WPR, and a WPP of the WPR. The WPT identifies a match if the PTM of the first circuit and the WPP of the switch network, the variable matching circuit, a modulator/demodulator block or an out-of-band communication block, and a control logic circuit of the WPT match the PTM and the WPP of the WPR to transmit power to the WPR based on the match.
    Type: Grant
    Filed: January 16, 2016
    Date of Patent: June 13, 2017
    Assignee: WIPQTUS INC.
    Inventor: Ganapathy Sankar
  • Patent number: 9654184
    Abstract: A method and system for establishing a communication link in a wireless power system from a wireless power transmitter (WPT) to a wireless power receiver (WPR) is provided. A flux modulator is operably disposed in the WPT for dynamically changing the WPT's impedance so as to modulate a magnetic field produced on the transmitter coil when a primary voltage applied to the WPT. A flux demodulator is operably disposed in the WPR for receiving and demodulating a secondary voltage induced on a receiver coil due to the modulated magnetic field on the transmitter coil. The induction of the secondary voltage on the receiver coil due to the modulated magnetic field on the transmitter coil establishes the communication link from the WPT to the WPR. The flux demodulator is configured as an analog signal processing chain or a digital signal processing block for decoding information obtained from the WPT.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: May 16, 2017
    Assignee: WIPQTUS INC.
    Inventors: Ganapathy Sankar, Manjit Singh
  • Publication number: 20170098957
    Abstract: A dual mode wireless power receiver (DMWPR) selectively applying a received power to a load device and utilizing at least a part of the power to power-up, communicate, and charge a secondary wireless power receiver (SWPR) is provided. The DMWPR includes a first circuitry having an impedance network, a switch network, a filter capacitor, and one or more switches, and a second circuitry having a security engine, a control logic circuit, and a modulator/demodulator circuit. The first circuitry receives power in charging mode and transmits power in communication mode. The second circuitry configures the first circuitry to allow receipt and transmittal of power, receives and interprets data from SWPR in identified wireless power protocol, and based on the type of SWPR authenticates, decrypts and encrypts data transfer between DMWPR and SWPR, and receives and executes on a request from SWPR to perform a function associated with transmitted power.
    Type: Application
    Filed: April 10, 2016
    Publication date: April 6, 2017
    Inventor: Ganapathy Sankar
  • Patent number: 9608454
    Abstract: A method and a system for self-regulating wireless power transmitted to a wireless power receiver (WPR) are provided. An auto-tuning network is operably coupled within the WPR. The auto-tuning network includes an impedance network that dynamically increases, decreases, or maintains an amount of the received wirelessly transmitted power by detecting changes in a rectifier load disposed in the WPR and/or in a rectifier output voltage in the WPR. The auto-tuning network self-regulates the wireless power received from a wireless power transmitter (WPT) obviating the need for conventional communication messages. The WPT is hence free from a modulator/demodulator block and an out-of-band communication block and operates over a limited operating range to enable a simpler design for passing electromagnetic compliance regulations.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: March 28, 2017
    Assignee: WIPQTUS INC.
    Inventor: Ganapathy Sankar
  • Publication number: 20170040846
    Abstract: A method and system for self-regulating wireless power transmitted to a wireless power receiver (WPR) is provided. An auto-tuning network is operably coupled within the WPR. The auto-tuning network comprises an impedance network that dynamically increases, decreases, or maintains amount of the received wirelessly transmitted power by detecting changes in a rectifier load disposed in the WPR and/or in an output voltage of the rectifier in the WPR. The auto-tuning network self-regulates the wireless power received from a wireless power transmitter (WPT) obviating the need for conventional communication messages. The WPT is hence free from a modulator/demodulator block and an out-of-band communication block and can operate over a limited operating range to enable simpler design for passing EMC regulation.
    Type: Application
    Filed: October 19, 2016
    Publication date: February 9, 2017
    Inventor: Ganapathy Sankar
  • Publication number: 20160372963
    Abstract: A wireless power system (WPS) has a wireless power transmitter (WPT) that appraises an input power available to a power inverter from one or more input power sources. The WPT comprises the power inverter that wirelessly transmits power to a wireless power receiver (WCR) of the WPS, and a power appraiser circuit (PAC). The PAC ascertains maximum input power available to the power inverter from the input power sources. The PAC includes a variable load connected to a path carrying the input power to the power inverter or one or more input pins that receive power ratings of the input power sources that indicate available maximum input power from the input power sources. The ascertaining of maximum input power available to the power inverter from the input power sources appraises the input power available to the power inverter. The WCR receives information representing maximum power deliverable by the WPT.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Inventor: Ganapathy Sankar