Patents by Inventor Ganesan Raghu

Ganesan Raghu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9042487
    Abstract: Apparatus and methods disclosed herein perform gain, clipping, and phase compensation in the presence of I/Q mismatch in quadrature RF receivers. Gain and phase mismatch are exacerbated by differences in clipping between I & Q signals in low resolution ADCs. Signals in the stronger channel arm are clipped differentially more than weaker signals in the other channel arm. Embodiments herein perform clipping operations during iterations of gain mismatch calculations in order to balance clipping between the I and Q channel arms. Gain compensation coefficients are iteratively converged, clipping levels are established, and data flowing through the network is gain and clipping compensated. A compensation phase angle and phase compensation coefficients are then determined from gain and clipping compensated sample data. The resulting phase compensation coefficients are applied to the gain and clipping corrected receiver data to yield a gain, clipping, and phase compensated data stream.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: May 26, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ganesan Raghu, Bijoy Bhukania, Jaiganesh Balakrishnan
  • Publication number: 20140044158
    Abstract: Apparatus and methods disclosed herein perform gain, clipping, and phase compensation in the presence of I/Q mismatch in quadrature RF receivers. Gain and phase mismatch are exacerbated by differences in clipping between I & Q signals in low resolution ADCs. Signals in the stronger channel arm are clipped differentially more than weaker signals in the other channel arm. Embodiments herein perform clipping operations during iterations of gain mismatch calculations in order to balance clipping between the I and Q channel arms. Gain compensation coefficients are iteratively converged, clipping levels are established, and data flowing through the network is gain and clipping compensated. A compensation phase angle and phase compensation coefficients are then determined from gain and clipping compensated sample data. The resulting phase compensation coefficients are applied to the gain and clipping corrected receiver data to yield a gain, clipping, and phase compensated data stream.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 13, 2014
    Inventors: Ganesan Raghu, Bijoy Bhukania, Jaiganesh Balakrishnan