Patents by Inventor Ganesh Sundararajan

Ganesh Sundararajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240146565
    Abstract: Techniques for virtualizing tenant transport interfaces configured to implement per-tenant network routing attribute differentiation in each tenant overlay of a multisite wide area network (WAN) and share the virtual transport interfaces between multi-tenant edge (MTE) devices providing transport services to tenant devices based on a defined tenant tier model. A Software-Defined Networking (SDN) controller may receive a physical transport interface and/or a device type associated with a tenant device. The SDN controller may determine a virtual transport interface for the tenant device based on a tier associated with the tenant. MTE device(s) may utilize the physical transport interface to establish sessions with other MTE device(s) in the WAN. The virtual transport interface may be utilized by MTE devices to implement and/or enforce network routing attributes when forwarding network traffic associated with the tenant via the sessions established between the MTE devices through the WAN.
    Type: Application
    Filed: November 2, 2022
    Publication date: May 2, 2024
    Inventors: Ajeet Pal Singh Gill, Balaji Sundararajan, Srilatha Tangirala, Nithin Bangalore Raju, Ravi Kiran Chintallapudi, Pradeepan Kannawadi, Ganesh Devendrachar
  • Patent number: 11962429
    Abstract: Techniques for virtualizing tenant transport interfaces configured to implement per-tenant network routing attribute differentiation in each tenant overlay of a multisite wide area network (WAN) and share the virtual transport interfaces between multi-tenant edge (MTE) devices providing transport services to tenant devices based on a defined tenant tier model. A Software-Defined Networking (SDN) controller may receive a physical transport interface and/or a device type associated with a tenant device. The SDN controller may determine a virtual transport interface for the tenant device based on a tier associated with the tenant. MTE device(s) may utilize the physical transport interface to establish sessions with other MTE device(s) in the WAN. The virtual transport interface may be utilized by MTE devices to implement and/or enforce network routing attributes when forwarding network traffic associated with the tenant via the sessions established between the MTE devices through the WAN.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: April 16, 2024
    Assignee: Cisco Technology, Inc.
    Inventors: Balaji Sundararajan, Srilatha Tangirala, Ajeet Pal Singh Gill, Nithin Bangalore Raju, Ravi Kiran Chintallapudi, Pradeepan Kannawadi, Ganesh Devendrachar
  • Patent number: 9552206
    Abstract: Traditionally, providing parallel processing within a multi-core system has been very difficult. Here, however, a system is provided where serial source code is automatically converted into parallel source code, and a processing cluster is reconfigured “on the fly” to accommodate the parallelized code based on an allocation of memory and compute resources. Thus, the processing cluster and its corresponding system programming tool provide a system that can perform parallel processing from a serial program that is transparent to a user. Generally, a control node connected to the address and data leads of a host processor uses messages to control the processing of data in a processing cluster. The cluster includes nodes of parallel processors, shared function memory, a global load/store, and hardware accelerators all connected to the control node by message busses. A crossbar data interconnect routes data to the cluster circuits separate from the message busses.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: January 24, 2017
    Assignee: Texas Instruments Incorporated
    Inventors: William M. Johnson, Murali S. Chinnakonda, Jeffrey L. Nye, Toshio Nagata, John W. Glotzbach, Hamid R. Sheikh, Ajay Jayaraj, Stephen Busch, Shalini Gupta, Robert J.P. Nychka, David H. Bartley, Ganesh Sundararajan
  • Patent number: 8219076
    Abstract: An access probe existing and generated within a base station to simulate a mobile terminal for the purpose of testing base station receive functionality within a communications system. The access probe data is injected at baseband rather than at RF to eliminate the need for analog/RF circuitry. The access probe performs injection at the front end of the base station receiver to exercise as much receive data path as possible. A unique ID is embedded in the access probes so that the communications system is aware which probes within a sequence were received successfully and at what power level. Within in-field applications, the unique ID allows the communications system to distinguish simulated access probes from those corresponding to real mobiles.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: July 10, 2012
    Assignee: Nortel Networks Limited
    Inventors: Ganesh Sundararajan, Edward Ken Kiu Mah, Neil McGowan
  • Publication number: 20120131309
    Abstract: Traditionally, providing parallel processing within a multi-core system has been very difficult. Here, however, a system in provided where serial source code is automatically converted into parallel source code, and a processing cluster is reconfigured “on the fly” to accommodate the parallelized code based on an allocation of memory and compute resources. Thus, the processing cluster and its corresponding system programming tool provide a system that can perform parallel processing from a serial program that is transparent to a user.
    Type: Application
    Filed: September 14, 2011
    Publication date: May 24, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: William M. Johnson, Murali S. Chinnakonda, Jeffrey L. Nye, Toshio Nagata, John W. Glotzbach, Hamid R. Sheikh, Ajay Jayaraj, Stephen Busch, Shalini Gupta, Robert J.P. Nychka, David H. Bartley, Ganesh Sundararajan
  • Patent number: 8155089
    Abstract: Methods and apparatus for performing finger de-spreading and MRC combining are provided. A large antenna buffer is used to buffer all the finger signals of the same user so that the receiver can do both de-spreading and MRC at the same time without buffering the de-spreading finger symbols. For each user, a reference time is introduced to align all the finger signals of the same user in the Antenna Buffer. The reference time delay is used to generate the PN codes for de-spreading, as well as to count the number of symbols in a PCG or a frame. Methods for antenna buffer arrangement, interpolating filter implementation, channel estimation and MRC for traffic data channels, timing for the user's finger signal de-spreading and MRC, long code and short code generation for de-spreading, new finger allocation and finger timing adjustment.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: April 10, 2012
    Assignee: Ericsson AB
    Inventors: Xixian Chen, Woon Thong, Ganesh Sundararajan, Edward Ken Kiu Mah, Karl Mann
  • Patent number: 7801085
    Abstract: Methods and apparatus for performing finger de-spreading and MRC combining are provided. A large antenna buffer is used to buffer all the finger signals of the same user so that the receiver can do both de-spreading and MRC at the same time without buffering the de-spreading finger symbols. For each user, a reference time is introduced to align all the finger signals of the same user in the Antenna Buffer. The reference time delay is used to generate the PN codes for de-spreading, as well as to count the number of symbols in a PCG or a frame. Methods for antenna buffer arrangement, interpolating filter implementation, channel estimation and MRC for traffic data channels, timing for the user's finger signal de-spreading and MRC, long code and short code generation for de-spreading, new finger allocation and finger timing adjustment.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: September 21, 2010
    Assignee: Ericsson AB
    Inventors: Xixian Chen, Woon Thong, Ganesh Sundararajan, Edward Ken Kiu Mah, Karl Mann
  • Publication number: 20080096543
    Abstract: An access probe existing and generated within a base station to simulate a mobile terminal for the purpose of testing base station receive functionality within a communications system. The access probe data is injected at baseband rather than at RF to eliminate the need for analog/RF circuitry. The access probe performs injection at the front end of the base station receiver to exercise as much receive data path as possible. A unique ID is embedded in the access probes so that the communications system is aware which probes within a sequence were received successfully and at what power level. Within in-field applications, the unique ID allows the communications system to distinguish simulated access probes from those corresponding to real mobiles.
    Type: Application
    Filed: July 19, 2005
    Publication date: April 24, 2008
    Applicant: NORTEL NETWORKS LIMITED
    Inventors: Ganesh Sundararajan, Edward Ken Kiu Mah, Neil McGowan
  • Patent number: 7173900
    Abstract: A method and an apparatus for generating a chip of a chip sequence based on a supplied chip position index and a supplied sequence index is provided by generating a basic sequence bit using a portion of the chip position index and the sequence index, and by generating different mask bits using different portions of the chip position index and the sequence index, the mask bits being used in conjunction with the basic sequence bit to generate the chip. Such a chip generation process increases the chip generation rate so that users requesting chips to be generated may be efficiently pipelined.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: February 6, 2007
    Assignee: Nortel Networks Limited
    Inventor: Ganesh Sundararajan