Patents by Inventor Gang-feng Fang

Gang-feng Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8228726
    Abstract: A system and method of an electrically programmable and erasable non-volatile memory cell fabricated using a single-poly, logic process with the addition of ONO deposition and etching is disclosed. In one embodiment, a non-volatile memory system includes at least one non-volatile memory cell consists of a SONOS transistor fabricated on a P substrate, with a deep N-well located in the P substrate, with a P-well located in the deep N-well. The memory cell further includes an access NMOS transistor, coupled to the SONOS transistor and located in the same P-well that includes an oxide only gate-dielectric. The cell can be fabricated in a modified logic process with other transistors and with their physical characteristics preserved.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: July 24, 2012
    Assignee: Chip Memory Technology, Inc.
    Inventors: Gang-Feng Fang, Wingyu Leung
  • Patent number: 7983081
    Abstract: An apparatus and method of an electrically programmable and erasable non-volatile memory cell with a deep N-well to isolate the memory cell from the substrate is disclosed. In one embodiment, a non-volatile memory apparatus includes at least one non-volatile memory cell fabricated on a P substrate, with a deep N-well located in the P substrate, while a P-well and an N-well are located in the deep N-well. The memory cell further includes a PMOS transistor located in the N-well, in which the PMOS transistor includes a PMOS gate-oxide, and an NMOS capacitor located in the P-well. The NMOS capacitor includes an N+ coupling region located in the P-well, and an NMOS gate-oxide. The memory cell further includes a floating gate comprised of a poly-silicon gate overlying the PMOS transistor and the NMOS capacitor.
    Type: Grant
    Filed: December 14, 2008
    Date of Patent: July 19, 2011
    Assignee: Chip.Memory Technology, Inc.
    Inventors: Gang-Feng Fang, Wingyu Leung
  • Patent number: 7919367
    Abstract: A non-volatile memory cell with increased charge retention is fabricated on the same substrate as logic devices using a single-gate conventional logic process. A silicide-blocking dielectric structure is formed over a floating gate of the NVM cell, thereby preventing silicide formation over the floating gate, while allowing silicide formation over the logic devices. Silicide spiking and bridging are prevented in the NVM cell, as silicide-blocking dielectric structure prevents silicide metal from coming in contact with the floating gate or adjacent sidewall spacers. The silicide-blocking dielectric layer may expose portions of the active regions of the NVM cell, away from the floating gate and adjacent sidewall spacers, thereby enabling silicide formation on these portions. Alternately, the silicide-blocking dielectric layer may cover the active regions of the NVM cell during silicide formation. In this case, silicide-blocking dielectric layer may be thinned or removed after silicide formation.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: April 5, 2011
    Assignee: MoSys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20110032766
    Abstract: A system and method of an electrically programmable and erasable non-volatile memory cell fabricated using a single-poly, logic process with the addition of ONO deposition and etching is disclosed. In one embodiment, a non-volatile memory system includes at least one non-volatile memory cell consists of a SONOS transistor fabricated on a P substrate, with a deep N-well located in the P substrate, with a P-well located in the deep N-well. The memory cell further includes an access NMOS transistor, coupled to the SONOS transistor and located in the same P-well that includes an oxide only gate-dielectric. The cell can be fabricated in a modified logic process with other transistors and with their physical characteristics preserved.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Applicant: Chip Memory Technology, Inc.
    Inventors: GANG-FENG FANG, Wingyu Leung
  • Publication number: 20100149874
    Abstract: An apparatus and method of an electrically programmable and erasable non-volatile memory cell with a deep N-well to isolate the memory cell from the substrate is disclosed. In one embodiment, a non-volatile memory apparatus includes at least one non-volatile memory cell fabricated on a P substrate, with a deep N-well located in the P substrate, while a P-well and an N-well are located in the deep N-well. The memory cell further includes a PMOS transistor located in the N-well, in which the PMOS transistor includes a PMOS gate-oxide, and an NMOS capacitor located in the P-well. The NMOS capacitor includes an N+ coupling region located in the P-well, and an NMOS gate-oxide. The memory cell further includes a floating gate comprised of a poly-silicon gate overlying the PMOS transistor and the NMOS capacitor.
    Type: Application
    Filed: December 14, 2008
    Publication date: June 17, 2010
    Inventors: WINGYU LEUNG, Gang-feng Fang
  • Patent number: 7671401
    Abstract: A method, apparatus, and system in which an embedded memory fabricated in accordance with a conventional logic process includes one or more electrically-alterable non-volatile memory cells, each having a programming transistor, a read transistor and a control capacitor, which share a common floating gate electrode. The under-diffusion of the source/drain regions of the programming transistor and control capacitor are maximized. In one embodiment, the source/drain regions of the programming transistor are electrically shored by transistor punch-through (or direct contact).
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: March 2, 2010
    Assignee: Mosys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Patent number: 7633811
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: December 15, 2009
    Assignee: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Patent number: 7633810
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: December 15, 2009
    Assignee: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Patent number: 7522456
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: April 21, 2009
    Assignee: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Patent number: 7477546
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: January 13, 2009
    Assignee: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Publication number: 20080186778
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Application
    Filed: January 28, 2008
    Publication date: August 7, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Publication number: 20080153225
    Abstract: A method, apparatus, and system in which an embedded memory fabricated in accordance with a conventional logic process includes one or more electrically-alterable non-volatile memory cells, each having a programming transistor, a read transistor and a control capacitor, which share a common floating gate electrode. The under-diffusion of the source/drain regions of the programming transistor and control capacitor are maximized. In one embodiment, the source/drain regions of the programming transistor are electrically shored by transistor punch-through (or direct contact).
    Type: Application
    Filed: March 10, 2008
    Publication date: June 26, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-Feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20080151623
    Abstract: A method, apparatus, and system in which an embedded memory fabricated in accordance with a conventional logic process includes one or more electrically-alterable non-volatile memory cells, each having a programming transistor, a read transistor and a control capacitor, which share a common floating gate electrode. The under-diffusion of the source/drain regions of the programming transistor and control capacitor are maximized. In one embodiment, the source/drain regions of the programming transistor are electrically shored by transistor punch-through (or direct contact).
    Type: Application
    Filed: March 10, 2008
    Publication date: June 26, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Patent number: 7391647
    Abstract: A non-volatile memory (NVM) cell fabricated on a semiconductor substrate, and including a floating gate electrode (which extends at least partially over all active regions of the NVM cell). The NVM cell also includes a PMOS access transistor located in a first n-type region, a PMOS control capacitor located in a second n-type region (separate from the first n-type region), and an NMOS programming transistor located in a p-type region. The floating gate electrode is a continuous electrode which extends over the active regions of the PMOS access transistor, the PMOS control capacitor and the NMOS programming transistor. Various array connections are provided for implementing arrays using this NVM cell. The PMOS access transistor and NMOS programming transistor can be replaced with an NMOS access transistor and a PMOS erase transistor, respectively, in an alternate embodiment.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: June 24, 2008
    Assignee: Mosys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20080138950
    Abstract: A non-volatile memory cell with increased charge retention is fabricated on the same substrate as logic devices using a single-gate conventional logic process. A silicide-blocking dielectric structure is formed over a floating gate of the NVM cell, thereby preventing silicide formation over the floating gate, while allowing silicide formation over the logic devices. Silicide spiking and bridging are prevented in the NVM cell, as silicide-blocking dielectric structure prevents silicide metal from coming in contact with the floating gate or adjacent sidewall spacers. The silicide-blocking dielectric layer may expose portions of the active regions of the NVM cell, away from the floating gate and adjacent sidewall spacers, thereby enabling silicide formation on these portions. Alternately, the silicide-blocking dielectric layer may cover the active regions of the NVM cell during silicide formation. In this case, silicide-blocking dielectric layer may be thinned or removed after silicide formation.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 12, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20080137410
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 12, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Publication number: 20080137438
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 12, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Publication number: 20080137437
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 12, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Patent number: 7382658
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: June 3, 2008
    Assignee: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Publication number: 20070279987
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Applicant: MONOLITHIC SYSTEM TECHNOLOGY, INC.
    Inventors: Gang-feng Fang, Wingyu Leung