Patents by Inventor Gangfeng WANG

Gangfeng WANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11762949
    Abstract: Provided are a classification model training method, system, electronic device, and storage medium. The method includes: determining sampling rates of first-class samples and second-class samples in a data set, and setting the samples with a sampling rate less than a preset value as target samples (S101); determining data distribution feature information of the target samples based on Euclidean distances between all the samples in the data set (S102); wherein the data distribution feature information is information describing the number of same-class samples in nearest neighbor samples, and the nearest neighbor samples are two samples at a Euclidean distance less than a preset distance; generating new samples corresponding to the target samples based on the data distribution feature information (S103); and training the classification model using the first-class samples, the second-class samples and the new samples (S104).
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: September 19, 2023
    Assignee: SHANDONG YINGXIN COMPUTER TECHNOLOGIES CO., LTD.
    Inventor: Gangfeng Wang
  • Publication number: 20230038579
    Abstract: Provided are a classification model training method, system, electronic device, and storage medium. The method includes: determining sampling rates of first-class samples and second-class samples in a data set, and setting the samples with a sampling rate less than a preset value as target samples (S101); determining data distribution feature information of the target samples based on Euclidean distances between all the samples in the data set (S102); wherein the data distribution feature information is information describing the number of same-class samples in nearest neighbor samples, and the nearest neighbor samples are two samples at a Euclidean distance less than a preset distance; generating new samples corresponding to the target samples based on the data distribution feature information (S103); and training the classification model using the first-class samples, the second-class samples and the new samples (S104).
    Type: Application
    Filed: August 21, 2020
    Publication date: February 9, 2023
    Inventor: Gangfeng WANG