Patents by Inventor Ganping Ju

Ganping Ju has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9799363
    Abstract: A magnetic stack includes a substrate and a magnetic recording layer disposed over the substrate. The magnetic recording layer comprises magnetic crystalline grains and a segregant disposed between grain boundaries of the crystalline grains. One or both of the magnetic crystalline grains and the segregant are doped with a rare earth or transition metal dopant in an amount that provides the magnetic recording layer with a magnetic damping value, ?, between about 0.1 to about 1.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 24, 2017
    Assignee: SEAGATE TECHNOLOGY, LLC
    Inventors: Xi Chen, Yingguo Peng, Jan-Ulrich Thiele, Ganping Ju, Thomas Roscamp
  • Publication number: 20170301366
    Abstract: A stack includes a substrate, a magnetic recording layer having a columnar structure, and an interlayer disposed between the substrate and the magnetic recording layer. The columnar structure includes magnetic grains separated by a crystalline segregant or a combination of crystalline and amorphous segregants.
    Type: Application
    Filed: June 27, 2017
    Publication date: October 19, 2017
    Inventors: Jingsheng Chen, Kaifeng Dong, Ganping Ju, Yingguo Peng
  • Patent number: 9779771
    Abstract: A stack includes a substrate, a magnetic recording layer comprising FePtX disposed over the substrate, and a capping layer disposed on the magnetic recording layer. The capping layer comprises Co; at least one rare earth element; one or more elements selected from a group consisting of Fe and Pt; and an amorphizing agent comprising one to three elements selected from a group consisting of B, Zr, Ta, Cr, Nb, W, V, and Mo.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: October 3, 2017
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Kangkang Wang, Yingguo Peng, Ganping Ju, Xiaobin Zhu, Li Gao, Yinfeng Ding, Kai Chieh Chang, Timothy J. Klemmer, Yukiko Kubota, Jan-Ulrich Thiele, Thomas P. Nolan
  • Patent number: 9697857
    Abstract: A three dimensional magnetic recording media can consist of a coupling layer disposed between first and second vertically stacked recording layers. The coupling layer can provide exchange or antiferromagnetic coupling and allow the respective recording layers to be individually heat selected to different first and second coupling strengths through application of heat from a heat source.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 4, 2017
    Assignee: Seagate Technology LLC
    Inventors: Joachim Ahner, David M. Tung, Ganping Ju, Philip L. Steiner, Thomas P. Nolan, Thomas Y. Chang, Pin-Wei Huang, Kaizhong Gao, Timothy Klemmer, David S. Kuo
  • Patent number: 9689065
    Abstract: A stack includes a substrate, a magnetic recording layer having a columnar structure, and an interlayer disposed between the substrate and the magnetic recording layer. The columnar structure includes magnetic grains separated by a crystalline segregant or a combination of crystalline and amorphous segregants.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: June 27, 2017
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Jingsheng Chen, Kaifeng Dong, Ganping Ju, Yingguo Peng
  • Patent number: 9685183
    Abstract: An apparatus includes a substrate and a magnetic layer coupled to the substrate. The magnetic layer includes an alloy that has magnetic hardness that is a function of the degree of chemical ordering of the alloy. The degree of chemical ordering of the alloy in a first portion of the magnetic layer is greater than the degree of chemical ordering of the alloy in a second portion of the magnetic layer, and the first portion of the magnetic layer is closer to the substrate than the second portion of the magnetic layer.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: June 20, 2017
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Yingguo Peng, Xiaowei Wu, Ganping Ju, Bin Lu
  • Publication number: 20170092317
    Abstract: One embodiment described herein is directed to a method involving depositing a seed layer on a substrate, the seed layer comprising A1 phase FePt with a ratio of Pt of Fe greater than 1:1. A main layer is deposited on the seed layer, the main layer comprising A1 phase FePt with a ratio of Pt to Fe of approximately 1:1. A cap layer is deposited on the main layer, the cap layer comprising A1 phase FePt with a ratio of Pt to Fe of less than 1:1. The seed, main and cap layers are annealed to convert the A1 phase FePt to L10 phase FePt having a graded FePt structure of varying stoichimetry from approximately Fe50Pt50 adjacent a lower portion of the structure proximate the substrate to Fe>50Pt<50 adjacent an upper portion of the structure opposite the lower portion.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Inventors: Jiaoming Qui, Yonghua Chen, Ganping Ju, Thomas P. Nolan
  • Patent number: 9589588
    Abstract: An apparatus comprises a spindle to rotate a magnetic recording medium and a magnetic field generator to expose a track of the medium to a DC magnetic field. The magnetic field generator is configured to saturate the track during an erase mode and reverse the DC magnetic field impinging the track during a writing mode. A laser arrangement heats the track during the erase mode and, during the writing mode, heats the track while the track is exposed to the reversed DC magnetic field so as to write a magnetic pattern thereon. A reader reads the magnetic pattern and generates a read signal. A processor is coupled to the reader and configured to measure one or more magnetic properties of the track using the read signal. The apparatus can further comprise a Kerr sensor that generates a Kerr signal using the magnetic pattern.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: March 7, 2017
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Kangkang Wang, Xiaobin Zhu, Ganping Ju, Kai Chieh Chang, Yingguo Peng, Timothy J. Klemmer, Jan-Ulrich Thiele
  • Patent number: 9520151
    Abstract: A method involves depositing a seed layer comprising at least A1 phase FePt. A main layer of A1 phase FePt is deposited over the seed layer. The main layer includes FePt of a different stoichiometry than the seed layer. The seed and main layers are annealed to convert the A1 phase FePt to L10 phase FePt. The annealing involves heating the substrate prior to depositing at least part of the A1 phase FePt of the main or seed layers.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 13, 2016
    Assignee: Seagate Technology LLC
    Inventors: Jiaoming Qui, Yonghua Chen, Ganping Ju, Thomas P. Nolan
  • Publication number: 20160343396
    Abstract: An apparatus comprises a spindle to rotate a magnetic recording medium and a magnetic field generator to expose a track of the medium to a DC magnetic field. The magnetic field generator is configured to saturate the track during an erase mode and reverse the DC magnetic field impinging the track during a writing mode. A laser arrangement heats the track during the erase mode and, during the writing mode, heats the track while the track is exposed to the reversed DC magnetic field so as to write a magnetic pattern thereon. A reader reads the magnetic pattern and generates a read signal. A processor is coupled to the reader and configured to measure one or more magnetic properties of the track using the read signal. The apparatus can further comprise a Kerr sensor that generates a Kerr signal using the magnetic pattern.
    Type: Application
    Filed: May 9, 2016
    Publication date: November 24, 2016
    Inventors: Kangkang Wang, Xiaobin Zhu, Ganping Ju, Kai Chieh Chang, Yingguo Peng, Timothy J. Klemmer, Jan-Ulrich Thiele
  • Patent number: 9502065
    Abstract: Various magnetic stack embodiments may be constructed with a soft magnetic underlayer (SUL) having a first thickness disposed between a substrate and a magnetic recording layer. A heatsink may have a second thickness and be disposed between the SUL and the magnetic recording layer. The first and second thicknesses may each be tuned to provide predetermined thermal conductivity and magnetic permeability throughout the data media.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: November 22, 2016
    Assignee: Seagate Technology LLC
    Inventors: KaiChieh Chang, Xiaobin Zhu, Yinfeng Deng, Ganping Ju, Timothy J. Klemmer, Yukiko Kubota, Thomas P. Nolan, YingGuo Peng, Jan-Ulrich Thiele, Qihong Wu
  • Patent number: 9443544
    Abstract: A magnetic stack includes multiple granular layers, at least one of the multiple granular layers is a magnetic layer that includes exchange coupled magnetic grains separated by a segregant having Ms greater than 100 emu/cc. Each of the multiple granular layers have anisotropic thermal conductivity.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: September 13, 2016
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Yingguo Peng, Jan-Ulrich Thiele, Ganping Ju, Thomas Patrick Nolan, Yinfeng Ding, Alexander Qihong Wu
  • Patent number: 9368142
    Abstract: A magnetic stack includes a substrate, a magnetic recording layer, and a TiN—X layer disposed between the substrate and the magnetic recording layer. In the TiN—X layer, X is a dopant comprising at least one of MgO, TiO, TiO2, ZrN, ZrO, ZrO2, HfN, HfO, AlN, and Al2O3.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: June 14, 2016
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Jingsheng Chen, Huihui Li, Ganping Ju, Yingguo Peng
  • Patent number: 9348000
    Abstract: A resistive electromagnet assembly comprises a pair of coils with a gap defined between the coils. The resistive electromagnet assembly is configured to generate a field having a magnetic flux density of at least about 4 Tesla and at a sweep rate to complete a hysteresis loop in less than about 1 minute. A support assembly is configured to support a sample of magnetic material within the gap. An optics module is configured to expose a test region of the magnetic material sample to an optical beam probe while the test region is subjected to the field and to receive a reflected beam from the test region. A processor is coupled to the optics module and configured to measure one or more properties of the magnetic material using the received reflected beam.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 24, 2016
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Jason L. Pressesky, Ganping Ju
  • Patent number: 9349402
    Abstract: Provided herein is an apparatus comprising a substrate; a continuous layer over the substrate comprising a first heat sink layer; and a plurality of features over the continuous layer comprising a second heat sink layer, a first magnetic layer over the second heat sink layer, and a second magnetic layer, wherein the first and second magnetic layers are configured to provide a temperature-dependent, exchange spring mechanism.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: May 24, 2016
    Assignee: Seagate Technology LLC
    Inventors: Xi Chen, Ganping Ju, Yingguo Peng, Timothy J. Klemmer, Yukiko Kubota, Jan-Ulrich Thiele, David S. Kuo, Kai-Chieh Chang, Kangkang Wang, Li Gao, Yinfeng Ding
  • Patent number: 9336832
    Abstract: An apparatus comprises a spindle to rotate a magnetic recording medium and a magnetic field generator to expose a track of the medium to a DC magnetic field. The magnetic field generator is configured to saturate the track during an erase mode and reverse the DC magnetic field impinging the track during a writing mode. A laser arrangement heats the track during the erase mode and, during the writing mode, heats the track while the track is exposed to the reversed DC magnetic field so as to write a magnetic pattern thereon. A reader reads the magnetic pattern and generates a read signal. A processor is coupled to the reader and configured to measure one or more magnetic properties of the track using the read signal. The apparatus can further comprise a Kerr sensor that generates a Kerr signal using the magnetic pattern.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: May 10, 2016
    Assignee: Seagate Technology LLC
    Inventors: Kangkang Wang, Xiaobin Zhu, Ganping Ju, Kai Chieh Chang, Yingguo Peng, Timothy J. Klemmer, Jan-Ulrich Thiele
  • Publication number: 20160064022
    Abstract: In some embodiments, a thermally assisted data recording medium has a recording layer formed of iron (Fe), platinum (Pt) and a transition metal T selected from a group consisting of Rhodium (Rh), Ruthenium (Ru), Osmium (Os) and Iridium (Ir) to substitute for a portion of the Pt content as FeYPtY-XTX with Y in the range of from about 20 at % to about 80 at % and X in the range of from about 0 at % to about 20 at %.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 3, 2016
    Inventors: Jan-Ulrich Thiele, Yinfeng Ding, YingGuo Peng, Kai-Chieh Chang, Timothy John Klemmer, Li Gao, Yukiko Kubota, Ganping Ju
  • Patent number: 9263076
    Abstract: A magnetic stack includes a heatsink layer comprising (200) Cu or (200) CuX, a magnetic recording layer, and an interlayer disposed between the heatsink layer and the magnetic recording layer.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: February 16, 2016
    Assignee: Seagate Technology LLC
    Inventors: Yingguo Peng, Kai Chieh Chang, Yinfeng Ding, Ganping Ju, Yukiko Kubota, Timothy J. Klemmer, Jan-Ulrich Thiele, Qihong Wu, Xiaobin Zhu
  • Patent number: 9245566
    Abstract: A perpendicular magnetic media includes a substrate, a patterned template, a seed layer and a magnetic layer. The patterned template is formed on the substrate and includes a plurality of growth sites that are evenly spaced apart from each other. The seed layer is formed over the patterned template and the exposed areas of the substrate. Magnetic material is sputter deposited onto the seed layer with one grain of the magnetic material nucleated over each of the growth sites. The grain size distribution of the magnetic material is reduced by controlling the locations of the growth sites which optimizes the performance of the perpendicular magnetic media.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: January 26, 2016
    Assignee: Seagate Technology LLC
    Inventors: Shuaigang Xiao, Thomas Young Chang, Yingguo Peng, David S. Kuo, Kaizhong Gao, Thomas P. Nolan, Ganping Ju
  • Patent number: 9207024
    Abstract: The embodiments disclose at least one predetermined patterned layer configured to eliminate a physical path of lateral thermal bloom in a recording device, at least one gradient layer coupled to the patterned layer and configured to use materials with predetermined thermal conductivity for controlling a rate of dissipation and a path coupled to the gradient layer and configured to create a path of least thermal conduction resistance for directing dissipation along the path, wherein the path substantially regulates and prevents lateral thermal bloom.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: December 8, 2015
    Assignee: Segate Technology LLC
    Inventors: Ganping Ju, Xiaobin Zhu, Chubing Peng, Yukiko A. Kubota, Yingguo Peng, Timothy J. Klemmer, Jan-Ulrich Thiele, David S. Kuo, Bin Lu, Julius K. Hohlfeld