Patents by Inventor Gaobo Huang

Gaobo Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230210334
    Abstract: A recharge control method includes: providing a robot comprising a body and four infrared carrier receivers, wherein a second and a third of the four infrared carrier receivers are mounted on a front of the body, and a first and a fourth of four infrared carrier receivers are mounted on left side and on a right side of the body; receiving, by one or more of the four infrared carrier receivers, infrared carrier emitted by a charging dock; determining an area where the robot is located, wherein the area is one of at least five areas around the charging dock that are determined based on receiving of the infrared carrier by different combinations of the four infrared carriers and based on not receiving of the infrared carrier by the infrared carriers; and controlling the robot to move to the charging dock according to a movement mode corresponding to the area.
    Type: Application
    Filed: December 13, 2022
    Publication date: July 6, 2023
    Inventors: Gaobo Huang, Hua Zhang, Xiangbin Huang
  • Publication number: 20220327739
    Abstract: A pose calibration method, a robot, and a computer readable storage medium are provided. The method includes: obtaining, through a depth camera on a robot, a depth image including a target plane (i.e., a plane where the robot is located); determining point cloud data corresponding to the depth image; and calibrating a target pose of the depth camera based on the point cloud data and a preset optimization method, that is, calibrating a pitch angle and a roll angle of the depth camera and a height of the depth camera in a coordinate system of the robot. In this manner, the accuracy of the calibration of the target pose can be effectively improved while simple in implementation and small in calculation amount, and the efficiency of the calibration of the target pose can be improved so as to improve the user experience.
    Type: Application
    Filed: April 14, 2022
    Publication date: October 13, 2022
    Inventors: Xiangbin Huang, Wenzhi Xu, Gaobo Huang
  • Patent number: 11422567
    Abstract: The present disclosure provides a robot recharging localization method including: calculating a directional angle of a first identification line based on identification points near a radar zero point of the first recognition line collected by a radar of the robot; determining a sequence of the identification points in an identification area according to the calculated directional angle of the first identification line, and finding two endpoints of the sequence of the identification points; determining dividing point(s) in the sequence of the identification points; fitting the sequence of the identification points to obtain a linear equation of the first identification line with respect to a coordinate system of a mobile robot; and determining a central positional coordinate of the first identification line based on the dividing point(s) and a linear equation, and determining a relative position of the robot based on the central positional coordinate and the linear equation.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 23, 2022
    Assignee: UBTECH ROBOTICS CORP LTD
    Inventors: Xiangbin Huang, Gaobo Huang, Pinjun Fu, Youjun Xiong
  • Patent number: 11126198
    Abstract: A robot movement control method and apparatus as well as a robot using the same are provided. The method includes: calculating a distance between a robot and a Ultrawide Band (UWB) base station; configuring an internal coordinate system according to a preset position of the UWB base station, and calculating a coordinate of the robot in the internal coordinate system according to a distance between the UWB base station and the robot; combining the coordinate of the robot in the internal coordinate system with localization information of an odometer provided on the robot to obtain a combined robot coordinate; and controlling the robot to move in accordance with a preset target position according to the combined robot coordinate. In such manner, UWB base station localization can be used to control the movement of a robot in a limited scene.
    Type: Grant
    Filed: December 30, 2018
    Date of Patent: September 21, 2021
    Assignee: UBTECH ROBOTICS CORP
    Inventors: Youjun Xiong, Gaobo Huang, Xiangbin Huang
  • Patent number: 11072072
    Abstract: The present disclosure provides a robot recharge docking method. The method includes: obtaining current radar data of a radar of a robot for a scanned obstacle; obtaining a position of a target object by analyzing the current radar data; controlling the robot to move to a predetermined position around the target object; determining whether infrared carrier data is received by the robot recharge docking apparatus from the target object; determining that the target object is a charging station upon receiving the infrared carrier data from the target object; and docking the robot at the target object to charge if the target object is the charging station. In the above-mentioned manner, the present disclosure can prevent the robot from taking an obstacle similar to a charging station in shape as the charging station to dock at, thereby ensuring the safety of the automatic recharging of the robot.
    Type: Grant
    Filed: March 30, 2019
    Date of Patent: July 27, 2021
    Assignee: UBTECH ROBOTICS CORP
    Inventors: Youjun Xiong, Jiawen Hu, Gaobo Huang, Musen Zhang
  • Patent number: 11059170
    Abstract: The present disclosure provides a joint limit detection method, apparatus, and robot with the same. The method includes: (a) determining a servo corresponding to a joint to be detected; (b) controlling an output shaft of the servo to rotate in a preset first direction; (c) measuring a rotational angle of the output shaft within a preset first duration; (d) determining whether the rotational angle of the output shaft is greater than a preset angle threshold; (e) repealing the steps (c) and (d) until the rotational angle of the output shaft is less than or equal to the preset angle threshold, if the rotational angle of the output shaft is greater than the angle threshold; and (f) determining a current rotational position of the output shaft as a first extreme position, if the rotational angle of the output shall is less than or equal to the angle threshold.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: July 13, 2021
    Assignee: UBTECH Robotics Corp
    Inventors: Youjun Xiong, Gaobo Huang, Hailang Zhou, Musen Zhang
  • Publication number: 20210055739
    Abstract: The present disclosure provides a robot recharging localization method including: calculating a directional angle of a first identification line based on identification points near a radar zero point of the first recognition line collected by a radar of the robot; determining a sequence of the identification points in an identification area according to the calculated directional angle of the first identification line, and finding two endpoints of the sequence of the identification points; determining dividing point(s) in the sequence of the identification points; fitting the sequence of the identification points to obtain a linear equation of the first identification line with respect to a coordinate system of a mobile robot; and determining a central positional coordinate of the first identification line based on the dividing point(s) and a linear equation, and determining a relative position of the robot based on the central positional coordinate and the linear equation.
    Type: Application
    Filed: December 18, 2019
    Publication date: February 25, 2021
    Inventors: Xiangbin Huang, Gaobo Huang, Pinjun Fu, Youjun Xiong
  • Patent number: 10913155
    Abstract: A robot joint controlling method includes: receiving a motion command; determining one or more joint servos that are needed to execute the motion command; and determining whether the one or more joint servos are in an occupied state, and if not, executing the motion command so as to control the one or more joint servos to operate accordingly.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: February 9, 2021
    Assignee: UBTECH ROBOTICS CORP
    Inventors: Youjun Xiong, Gaobo Huang, Jiawen Hu
  • Publication number: 20210011152
    Abstract: The present disclosure discloses an ultrasonic ranging method as well as an apparatus, and a robot using the same. The method includes: obtaining ultrasonic ranging data detected by a preset ultrasonic sensor; filtering the ultrasonic ranging data to obtain the filtered ultrasonic ranging data; determining whether a measured distance of a target sampling point meets a preset stability determination condition, where the target sampling point is any sampling point in the filtered ultrasonic ranging data; and recording and outputting the measured distance of the target sampling point, if the measured distance of the target sampling point meets the stability determination condition. According to the present disclosure, after the ultrasonic ranging data is filtered, the measured distance of each sampling point in the ultrasonic ranging data is further determined through the preset stability determination condition, which greatly reduces the probability of the occurrence of false alarms.
    Type: Application
    Filed: April 1, 2020
    Publication date: January 14, 2021
    Inventors: Gaobo Huang, Bin He, Xiangbin Huang, Wenxue Xie, Youjun Xiong
  • Publication number: 20210008716
    Abstract: The present disclosure provides a patrol method using a robot as well as an apparatus and a robot thereof. The method includes: obtaining a preset patrol configuration file and reading a patrol sequence, a coordinate, and a navigation method of each patrol point from the patrol configuration file, wherein the patrol configuration file comprises at least two navigation methods; obtaining a preset electronic map and obtaining a starting coordinate of the robot in the electronic map through a localization equipment; and controlling the robot to move from the starting coordinate to the coordinate of each patrol point according to the patrol sequence by navigating the robot using the navigation method corresponding to the n-th patrol point in the patrol configuration file during moving the robot to the coordinate of the n-th patrol point. In comparison with the prior art, which improves the patrol efficiency of the robot.
    Type: Application
    Filed: August 13, 2019
    Publication date: January 14, 2021
    Inventors: Gaobo Huang, Jiawen Hu, Youjun Xiong
  • Patent number: 10838424
    Abstract: The present disclosure relates to robot technology, and particularly to a method and a robot for identifying charging station. The method includes: first, obtaining scanning data produced by a radar of the robot; then, determining whether an arc-shaped object exists in a scanning range of the radar of the robot based on the scanning data; finally, in response to determining that the arc-shaped object exists in the scanning range of the robot, determining that the arc-shaped object is a charging station. Compared with the prior art, the present disclosure substitutes the arc identification for the conventional concave-convex structure identification. Since the surface of the arc is relatively smooth, the data jumps at the intersection of the cross-section will not occur, hence the accuracy of charging station identification can be greatly improved.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 17, 2020
    Assignee: UBTECH ROBOTICS CORP
    Inventors: Youjun Xiong, Gaobo Huang, Xiangbin Huang
  • Patent number: 10747215
    Abstract: An error diagnosis method of a robot includes determining operational status of components of a robot and determining an operational status of a main control process of the robot, generating diagnosis data comprising a data format having an error status level, a name of an error diagnosis processes of the components, and an error code identity (ID) number, packaging diagnosis data of the operational status of the components as diagnosis information in a predetermined data format, storing the diagnosis information in memory.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: August 18, 2020
    Assignee: UBTECH ROBOTICS CORP.
    Inventors: Youjun Xiong, Wenxue Xie, Gaobo Huang
  • Patent number: 10739781
    Abstract: The present disclosure provides a method, apparatus, and terminal device for cliff detection. The method includes: obtaining a detection distance matrix of distances between a camera of a target robot and a ground within a preset detection angle range collected by the camera; obtaining a difference matrix obtained by subtracting a theoretical distance matrix from the detection distance matrix; counting an amount of elements in the difference matrix being greater than a preset first threshold; and determining a cliff is detected if the counted amount of the elements is greater than a preset second threshold. Through the overall consideration of the distance matrix of the distances within the detection angle range, even if a certain part of the ground changes its external conditions such as the color depth and the lightness, the influences on the overall detection result is extremely limited, which makes the detection result more accurate and reliable.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: August 11, 2020
    Assignee: UBTECH ROBOTICS CORP
    Inventors: Youjun Xiong, Gaobo Huang, Jiawen Hu
  • Publication number: 20200206921
    Abstract: A robot movement control method and apparatus as well as a robot using the same are provided. The method includes: calculating a distance between a robot and each UWB base station; configuring an internal coordinate system according to a preset position of the UWB base station, and calculating a coordinate of the robot in the internal coordinate system according to a distance between the UWB base station and the robot; combining the coordinate of the robot in the internal coordinate system with localization information of an odometer provided on the robot to obtain a combined robot coordinate; and controlling the robot to move in accordance with a preset target position according to the combined robot coordinate. In such manner, UWB base station localization can be used to control the movement of a robot in a limited scene.
    Type: Application
    Filed: December 30, 2018
    Publication date: July 2, 2020
    Inventors: YOUJUN XIONG, Gaobo Huang, Xiangbin Huang
  • Patent number: 10671080
    Abstract: The present disclosure provides a data processing method and a robot with the same. The robot includes: an electromagnetic wave receiver configured to receive at least two electromagnetic wave signals transmitted by at least two electromagnetic wave transmitters on a charging device within a preset time range; a demodulator configured to demodulate the at least two electromagnetic wave signals received by the electromagnetic wave receiver to obtain at least two corresponding electromagnetic wave demodulation data; a processor configured to determine electromagnetic wave demodulation control data based on the at least two obtained electromagnetic wave demodulation data and preset electromagnetic wave demodulation data; and a controller configured to move the robot according to the electromagnetic wave demodulation control data until the robot is docked at the charging device.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: June 2, 2020
    Assignee: UBTECH ROBOTICS CORP
    Inventors: Youjun Xiong, Jiawen Hu, Gaobo Huang, Caixia Li
  • Patent number: 10632614
    Abstract: The present disclosure relates to a motion-controlling method of a robot and the robot thereof. A main control circuit continuously transmits a controlling instruction to a cache circuit. The controlling instruction may include the controlling information of a specific servo. A driving circuit is configured to obtain and analyze the controlling instruction from the cache circuit, so as to obtain the controlling information of the specific servo. The driving circuit transmits the controlling information to the specific servo to control the specific servo. As such, coherence of the robot may be improved.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: April 28, 2020
    Assignee: UBTECH ROBOTICS CORP.
    Inventors: Youjun Xiong, Gaobo Huang, Jinbiao Zhang, Guoke Luo
  • Patent number: 10635115
    Abstract: The present disclosure relates to a recharging alignment method of a robot and a robot thereof. The recharging alignment method includes adjusting a signal receiver of the robot to a first critical point to obtain position information of the first critical point, adjusting the signal receiver from the first critical point to a second critical point to obtain position information of the second critical point, determining a mid-point of the first critical point arid the second critical point according to the position information of the first critical point and the second critical point, and adjusting the signal receiver to the mid-point to align with the recharging dock, so as to accurately align with the recharging dock.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: April 28, 2020
    Assignee: UBTECH ROBOTICS CORP.
    Inventors: Youjun Xiong, Jiawen Hu, Gaobo Huang
  • Patent number: 10632620
    Abstract: A motion control method for a robot is disclosed. The robot includes a determining module, a merging module, and a controlling module. The determining module determines whether at least two motion tasks executed in an adjacent sequence satisfy a merging condition. The merging module merges the at least two motion tasks to a new motion task, when the merging condition is satisfied. The controlling module controls the robot to perform the new motion task.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: April 28, 2020
    Assignee: UBTECH ROBOTICS CORP.
    Inventors: Youjun Xiong, Jiawen Hu, Gaobo Huang
  • Patent number: 10631051
    Abstract: Disclosed a smart television starting method, which includes: in a Suspend To RAM (STR) starting process of a smart television, acquiring a signal format and a video display control parameter corresponding to the signal format from a preset memory stored during last shutdown of the smart television after a kernel is recovered completely; setting a register group of each driver associated with video displaying according to the video display control parameter if the stored video display control parameter is obtained; when a signal lock notification sent by a driver layer is received, obtaining a signal format of a current lock signal from the signal lock notification; if the signal format of the lock signal is the same as the stored signal format, releasing a mute state of a to-be-played video corresponding to the current signal and playing the to-be-played video; The disclosure further provides a system for starting smart television.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: April 21, 2020
    Assignee: SHENZHEN TCL DIGITAL TECHNOLOGY LTD.
    Inventor: Gaobo Huang
  • Publication number: 20200030982
    Abstract: The present disclosure provides a robot recharge docking method. The method includes: obtaining current radar data of a radar of a robot for a scanned obstacle; obtaining a position of a target object by analyzing the current radar data; controlling the robot to move to a predetermined position around the target object; determining whether infrared carrier data is received by the robot recharge docking apparatus from the target object; determining that the target object is a charging station upon receiving the infrared carrier data from the target object; and docking the robot at the target object to charge if the target object is the charging station. In the above-mentioned manner, the present disclosure can prevent the robot from taking an obstacle similar to a charging station in shape as the charging station to dock at, thereby ensuring the safety of the automatic recharging of the robot.
    Type: Application
    Filed: March 30, 2019
    Publication date: January 30, 2020
    Inventors: Youjun Xiong, Jiawen Hu, Gaobo Huang, Musen Zhang