Patents by Inventor Gaozhu Peng

Gaozhu Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11820701
    Abstract: A method for generating various stress profiles for chemically strengthened glass. An alkali aluminosilicate glass is brought into contact with an ion exchange media such as, for example, a molten salt bath containing an alkali metal cation that is larger than an alkali metal cation in the glass. The ion exchange is carried out at temperatures greater than about 420° C. and at least about 30° C. below the anneal point of the glass.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: November 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Douglas Clippinger Allan, Xiaoju Guo, Guangli Hu, Gaozhu Peng
  • Patent number: 11815713
    Abstract: A multicore optical fiber includes two or more cores, a common interior cladding surrounding the two or more cores, and a common exterior cladding surrounding the common interior cladding. The common exterior cladding has a lower relative refractive index than the common interior cladding and reduces tunneling losses from the cores. The reduced tunneling loss allows placement of cores closer to the edge of the fiber, thus providing multicore optical fibers having higher core count for a given fiber diameter. Separation between cores is controlled to minimize crosstalk.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: November 14, 2023
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Gaozhu Peng
  • Patent number: 11702355
    Abstract: An apparatus for downwardly drawing a glass ribbon includes a forming vessel including an upper portion including a pair of outside surfaces and a forming wedge portion including a pair of downwardly inclined forming surfaces converging along a downstream direction to form a bottom edge. An edge director is provided that includes a flow directing portion formed from a portion of a frustoconical or conical shape.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: July 18, 2023
    Assignee: Corning Incorporated
    Inventors: Olus Naili Boratav, Steven Roy Burdette, Gaozhu Peng, William Anthony Whedon
  • Patent number: 11673822
    Abstract: A glass tube manufacturing apparatus for manufacturing glass tubing includes a glass delivery tank with molten glass. The glass delivery tank has a bottom opening. A bell has an upper portion with an outer diameter located at the bottom opening. A heating apparatus is at least partially disposed around the bell. The heating apparatus includes a heated portion and a muffle portion located below the heated portion. A lower extended muffle structure extends downwardly from the muffle portion. The lower extended muffle structure extending about the glass tubing on all sides to manage convective airflow therethrough.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: June 13, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Adam Charles Berkey, Eliot Geathers, Daniel Warren Hawtof, Douglas Edward McElheny, Jiandong Meng, Elias Panides, Gaozhu Peng, Randy Lee Rhoads, Yuriy Yurkovskyy, Chunfeng Zhou
  • Patent number: 11485667
    Abstract: Various improvements for dual-elevation edge roll system used in fused downdraw glass forming process are disclosed.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: November 1, 2022
    Assignee: Corning Incorporated
    Inventors: James Gary Anderson, Olus Naili Boratav, Gaozhu Peng, Adam Scott Regula, Alexander Lamar Robinson
  • Publication number: 20220326432
    Abstract: A multicore optical fiber includes two or more cores, a common interior cladding surrounding the two or more cores, and a common exterior cladding surrounding the common interior cladding. The common exterior cladding has a lower relative refractive index than the common interior cladding and reduces tunneling losses from the cores. The reduced tunneling loss allows placement of cores closer to the edge of the fiber, thus providing multicore optical fibers having higher core count for a given fiber diameter. Separation between cores is controlled to minimize crosstalk.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 13, 2022
    Inventors: Ming-Jun Li, Gaozhu Peng
  • Patent number: 11415743
    Abstract: A multicore optical fiber includes two or more cores, a common interior cladding surrounding the two or more cores, and a common exterior cladding surrounding the common interior cladding. The common exterior cladding has a lower relative refractive index than the common interior cladding and reduces tunneling losses from the cores. The reduced tunneling loss allows placement of cores closer to the edge of the fiber, thus providing multicore optical fibers having higher core count for a given fiber diameter. Separation between cores is controlled to minimize crosstalk.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: August 16, 2022
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Gaozhu Peng
  • Publication number: 20220089470
    Abstract: Various improvements for dual-elevation edge roll system used in fused downdraw glass forming process are disclosed.
    Type: Application
    Filed: January 22, 2020
    Publication date: March 24, 2022
    Inventors: James Gary Anderson, Olus Naili Boratav, Gaozhu Peng, Adam Scott Regula, Alexander Lamar Robinson
  • Publication number: 20220063241
    Abstract: Textured glass laminates are described along with methods of making textured glass laminates. The textured glass laminates may be formed via addition of nanoparticles or manipulation of the glass surface. Laminate compositions are designed to take advantage of glass clad and core properties at Tg, annealing point, strain point, and or softening point, along with glass clad and core viscosities. The resulting compositions are useful for anti-reflection surfaces, anti-fingerprint surfaces, anti-fogging surfaces, adhesion-promoting surfaces, friction-reducing surfaces, and the like.
    Type: Application
    Filed: August 18, 2021
    Publication date: March 3, 2022
    Inventors: Glen Bennett Cook, Shandon Dee Hart, John Christopher Mauro, Gaozhu Peng, Odessa Natalie Petzold, Wageesha Senaratne, Natesan Venkataraman
  • Publication number: 20220009204
    Abstract: A laminated glass article has a first layer having a first ion exchange diffusivity, D0, and a second layer adjacent to the first layer and having a second ion exchange diffusivity, D1. D0/D1 is from about 1.2 to about 10, or D0/D1 is from about 0.05 to about 0.95. A method for manufacturing the laminated glass article includes forming a first layer having a first ion exchange diffusivity, D0, and forming a second layer adjacent to the first layer and having a second ion exchange diffusivity, D1. The laminated glass article can be strengthened by an ion exchange process to form a strengthened laminated glass article having a compressive stress layer with a depth of layer from about 8 ?m to about 100 ?m.
    Type: Application
    Filed: September 27, 2021
    Publication date: January 13, 2022
    Inventors: Gaozhu Peng, Chunfeng Zhou
  • Publication number: 20210355015
    Abstract: Embodiments of glass forming apparatuses are disclosed herein. In one embodiment, a glass forming apparatus may include a forming body defining a draw plane extending from the forming body in a draw direction. An actively-cooled thermal sink may be positioned below the forming body in the draw direction and spaced apart from the draw plane. An infrared-transparent barrier may be positioned between the actively-cooled thermal sink and the draw plane. The infrared-transparent barrier may comprise an infrared-transparent wall positioned proximate the actively-cooled thermal sink or an infrared-transparent jacket positioned around the actively-cooled thermal sink.
    Type: Application
    Filed: September 30, 2019
    Publication date: November 18, 2021
    Inventors: Tomohiro Aburada, Anmol Agrawal, Jiandong Meng, Gaozhu Peng
  • Publication number: 20210300819
    Abstract: A method for generating various stress profiles for chemically strengthened glass. An alkali aluminosilicate glass is brought into contact with an ion exchange media such as, for example, a molten salt bath containing an alkali metal cation that is larger than an alkali metal cation in the glass. The ion exchange is carried out at temperatures greater than about 420° C. and at least about 30° C. below the anneal point of the glass.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: Douglas Clippinger Allan, Xiaoju Guo, Guangli Hu, Gaozhu Peng
  • Publication number: 20210294024
    Abstract: A multicore optical fiber includes two or more cores, a common interior cladding surrounding the two or more cores, and a common exterior cladding surrounding the common interior cladding. The common exterior cladding has a lower relative refractive index than the common interior cladding and reduces tunneling losses from the cores. The reduced tunneling loss allows placement of cores closer to the edge of the fiber, thus providing multicore optical fibers having higher core count for a given fiber diameter. Separation between cores is controlled to minimize crosstalk.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 23, 2021
    Inventors: Ming-Jun Li, Gaozhu Peng
  • Publication number: 20210206685
    Abstract: A method for separating a glass sheet from a glass ribbon is provided in which the glass ribbon has a bead region and a quality region. The method includes scoring a score line across a surface of the quality region and applying an energy source, such as a burner or laser, to at least one surface of the bead region so as to generate a thermal gradient between the surface and the center of the bead region in the thickness direction.
    Type: Application
    Filed: February 13, 2017
    Publication date: July 8, 2021
    Inventors: James William Brown, Tatyana Vyacheslavovna Brown, Zung-Sing Chang, Marvin William Kemmerer, Xinghua Li, Weiwei Luo, Gaozhu Peng, Wei Xu
  • Patent number: 11034614
    Abstract: A method for generating various stress profiles for chemically strengthened glass. An alkali aluminosilicate glass is brought into contact with an ion exchange media such as, for example, a molten salt bath containing an alkali metal cation that is larger than an alkali metal cation in the glass. The ion exchange is carried out at temperatures greater than about 420° C. and at least about 30° C. below the anneal point of the glass.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: June 15, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Douglas Clippinger Allan, Xiaoju Guo, Guangli Hu, Gaozhu Peng
  • Publication number: 20200299172
    Abstract: An apparatus for downwardly drawing a glass ribbon includes a forming vessel including an upper portion including a pair of outside surfaces and a forming wedge portion including a pair of downwardly inclined forming surfaces converging along a downstream direction to form a bottom edge. An edge director is provided that includes a flow directing portion formed from a portion of a frustoconical or conical shape.
    Type: Application
    Filed: November 20, 2018
    Publication date: September 24, 2020
    Inventors: Olus Naili Boratav, Steven Roy Burdette, Gaozhu Peng, William Anthony Whedon
  • Patent number: 10640410
    Abstract: Disclosed herein are apparatuses and methods for drawing sheet glass. More particularly, one or more sets of edge rolls can be configured to have a rotation axis angled away from a line orthogonal to the direction of flow of a ribbon of glass and positioned so as to contact the glass in the viscous region of the draw. Through control over the orientation and position of the one or more sets of edge rolls, sheet width attenuation may be eliminated, thickness of the beads that form along the edges of the glass sheet may be reduced, and instabilities associated with sheet width variation may be eliminated.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: May 5, 2020
    Assignee: Corning Incorporated
    Inventors: Olus Naili Boratav, Gaozhu Peng, William Anthony Whedon
  • Publication number: 20200031711
    Abstract: A method for generating various stress profiles for chemically strengthened glass. An alkali aluminosilicate glass is brought into contact with an ion exchange media such as, for example, a molten salt bath containing an alkali metal cation that is larger than an alkali metal cation in the glass. The ion exchange is carried out at temperatures greater than about 420° C. and at least about 30° C. below the anneal point of the glass.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 30, 2020
    Inventors: Douglas Clippinger Allen, Xiaoju Guo, Guangli Hu, Gaozhu Peng
  • Publication number: 20190375667
    Abstract: A glass forming apparatus may include a forming body positioned within an enclosure having a top panel and a pair of side panels. The forming body includes an inlet end and a trough defined by a pair of spaced apart weirs extending with an incline from the inlet end. The top panel is positioned above and extends substantially parallel to and across top surfaces of the pair of spaced apart weirs. The apparatus may also include a support plate positioned above and extending substantially parallel to and across the top panel of the enclosure and the weirs. An array of thermal elements of uniform size are suspended from the support plate and positioned above the trough of the forming body. The array of thermal elements may have bottom portions that are positioned equidistant from the top panel of the enclosure along the length of the forming body.
    Type: Application
    Filed: November 21, 2017
    Publication date: December 12, 2019
    Inventors: Olus Naili Boratav, Robert Delia, Bulent Kocatulum, Michael Yoshiya Nishimoto, Gaozhu Peng, Jae Hyun Yu
  • Patent number: 10494290
    Abstract: Systems and methods utilizing two Airy beams to process a non-rounded edge of a glass substrate or to cleave a glass substrate are disclosed. The method includes generating first and second Airy beams and causing them to cross at a crossing to define a curved intensity profile in the vicinity of the crossing point where the first and second Airy beams have respective local radii of curvature RA and RB. The method also includes scanning the curved intensity profile either along the non-rounded outer edge or through the glass along a scan path to form on the glass substrate a rounded outer edge having a radius of curvature RE that is smaller than the first and second local radii of curvature RA and RB. The radius of curvature RE can be adjusted by changing a beam angle between the first and second Airy beams.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: December 3, 2019
    Assignee: Corning Incorporated
    Inventors: Minghan Chen, Ming-Jun Li, Anping Liu, Gaozhu Peng