Patents by Inventor Gareth Benoit Cross

Gareth Benoit Cross has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240083605
    Abstract: A method includes: establishing wireless connection between an unmanned aerial vehicle (UAV) and a user interface; generating, via the user interface, a flight path for the unmanned aerial vehicle; generating, via the user interface, a flight schedule for the unmanned aerial vehicle, the flight schedule being associated with the flight path and include one or more designated times; and initiating, via the user interface, autonomous operation of the unmanned aerial vehicle for the unmanned aerial vehicle to autonomously fly the flight path at the one or more designated times
    Type: Application
    Filed: May 16, 2023
    Publication date: March 14, 2024
    Inventors: Jack Louis Zhu, Christopher Brian Grasberger, Abraham Galton Bachrach, Adam Parker Bry, Hayk Martirosyan, Gareth Benoit Cross
  • Patent number: 11906639
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may determine a first acceleration of the UAV based at least on information from an onboard accelerometer received at least one of prior to or during takeoff. The UAV may determine a second acceleration of the UAV based at least on location information received via a satellite positioning system receiver at least one of prior to or during takeoff. The UAV may further determine a relative heading of the UAV based at least in part on the first acceleration and the second acceleration, and may be directed to navigate an environment based at least on the determined relative heading.
    Type: Grant
    Filed: February 17, 2023
    Date of Patent: February 20, 2024
    Assignee: SKYDIO, INC.
    Inventors: Anurag Makineni, Kristen Marie Holtz, Gareth Benoit Cross, Hayk Martirosyan
  • Patent number: 11873116
    Abstract: Described herein are systems for automated docking of an unmanned aerial vehicle. For example, some systems include an unmanned aerial vehicle including a propulsion mechanism, an image sensor, and processing apparatus; and a dock including a landing surface configured to hold the unmanned aerial vehicle and a fiducial on the landing surface, wherein the processing apparatus is configured to: control the propulsion mechanism to cause the unmanned aerial vehicle to fly to a first location in a vicinity of the dock; access one or more images captured using the image sensor; detect the fiducial in at least one of the one or more images; determine a pose of the fiducial based on the one or more images; and control, based on the pose of the fiducial, the propulsion mechanism to cause the unmanned aerial vehicle to land on the landing surface.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: January 16, 2024
    Assignee: Skydio, Inc.
    Inventors: Yevgeniy Kozlenko, Jack Zhu, Gareth Benoit Cross, Teodor Tomic, Adam Bry, Abraham Galton Bachrach
  • Patent number: 11861896
    Abstract: Autonomous aerial navigation in low-light and no-light conditions includes using night mode obstacle avoidance intelligence, training, and mechanisms for vision-based unmanned aerial vehicle (UAV) navigation to enable autonomous flight operations of a UAV in low-light and no-light environments using infrared data.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: January 2, 2024
    Assignee: Skydio, Inc.
    Inventors: Samuel Shenghung Wang, Vladimir Nekrasov, Ryan David Kennedy, Gareth Benoit Cross, Peter Benjamin Henry, Kristen Marie Holtz, Hayk Martirosyan, Abraham Galton Bachrach, Adam Parker Bry
  • Publication number: 20230373663
    Abstract: A dock assembly includes a docking station and a stand or mount coupled to the docking station. The dock assembly may be configured for an unmanned aerial vehicle (UAV). The docking station may include a landing surface configured to interface with the UAV, an extended portion coupled to the landing surface and extending from the landing surface, and a fiducial located on the extended portion.
    Type: Application
    Filed: May 16, 2023
    Publication date: November 23, 2023
    Inventors: Yevgeniy Kozlenko, Benjamin Scott Thompson, Jack Zi Qi Ye, Christopher Brian Grasberger, Gareth Benoit Cross, Jack Louis Zhu, Abraham Galton Bachrach, Adam Parker Bry, Hayk Martirosyan
  • Publication number: 20230373668
    Abstract: A battery configured to power an unmanned aerial vehicle. The battery includes an enclosure configured to house a power module of the battery. The battery also includes one or more conducting contacts located on the enclosure configured to contact one or more pogo pins of a battery charger located on a docking station of the unmanned aerial vehicle.
    Type: Application
    Filed: May 16, 2023
    Publication date: November 23, 2023
    Inventors: Yevgeniy Kozlenko, Benjamin Scott Thompson, Jack Zi Qi Ye, Christopher Brian Grasberger, Gareth Benoit Cross, Jack Louis Zhu, Abraham Galton Bachrach, Adam Parker Bry, Hayk Martirosyan
  • Publication number: 20230280765
    Abstract: A computer accesses an input element storage and an output element storage. The computer accesses a symbolic expression for output element storage as a function of the input element storage. The computer computes, using a symbolic computation engine of the computer, a symbolic expression for the tangent space Jacobian of the output element storage with respect to an input tangent space. The computer outputs the computed expression.
    Type: Application
    Filed: January 27, 2023
    Publication date: September 7, 2023
    Inventors: Hayk Martirosyan, Aaron Christopher Miller, Nathan Leo Bucki, Bradley Matthew Solliday, Ryan David Kennedy, Jack Louis Zhu, Teodor Tomic, Yixiao Sun, Josiah Timothy VanderMey, Gareth Benoit Cross, Peter Benjamin Henry, Dominic William Pattison, Samuel Shenghung Wang, Kristen Marie Holtz, Harrison Zheng
  • Publication number: 20230244231
    Abstract: A computer accesses a first symbolic expression for an output matrix as a function of an input matrix at a computing device comprising processing circuitry and memory. The computer computes a first Jacobian of the input matrix with respect to an input tangent space. The computer computes a second Jacobian of the output matrix with respect to the input matrix. The computer computes a third Jacobian of an output tangent space with respect to the input matrix. The computer applies symbolic matrix multiplication to the first Jacobian, the second Jacobian, and the third Jacobian to obtain a second symbolic expression for the output tangent space with respect to the input tangent space. The computer provides a representation of the second symbolic expression, the second symbolic expression representing a computed tangent-space Jacobian.
    Type: Application
    Filed: January 27, 2023
    Publication date: August 3, 2023
    Inventors: Hayk Martirosyan, Aaron Christopher Miller, Nathan Leo Bucki, Bradley Matthew Solliday, Ryan David Kennedy, Jack Louis Zhu, Teodor Tomic, Yixiao Sun, Josiah Timothy VanderMey, Gareth Benoit Cross, Peter Benjamin Henry, Dominic William Pattison, Samuel Shenghung Wang, Kristen Marie Holtz, Harrison Zheng
  • Publication number: 20230244247
    Abstract: A computer of an unmanned aerial vehicle (UAV) accesses, from a memory unit, a problem definition comprising cost functions associated with travel of the UAV. The computer causes movement of the UAV based on the cost functions. The computer adjusts one or more of the cost functions during a flight of the UAV. The computer causes further movement of the UAV based on the adjusted one or more of the cost functions.
    Type: Application
    Filed: January 27, 2023
    Publication date: August 3, 2023
    Inventors: Hayk Martirosyan, Aaron Christopher Miller, Nathan Leo Bucki, Bradley Matthew Solliday, Ryan David Kennedy, Jack Louis Zhu, Teodor Tomic, Yixiao Sun, Josiah Timothy VanderMey, Gareth Benoit Cross, Peter Benjamin Henry, Dominic William Pattison, Samuel Shenghung Wang, Kristen Marie Holtz, Harrison Zheng
  • Publication number: 20230244750
    Abstract: A computer accesses a first symbolic expression for an output value as a function of an input value. The computer computes a first symbolic Jacobian of the input value with respect to an input tangent space from a symbolic Lie group definition. The computer computes a second symbolic Jacobian of the output value with respect to the input value. The computer computes a third symbolic Jacobian of an output tangent space with respect to the input value from the symbolic Lie group definition. The computer applies symbolic matrix multiplication to the first symbolic Jacobian, the second symbolic Jacobian, and the third symbolic Jacobian to obtain a second symbolic expression for the output tangent space with respect to the input tangent space. The computer provides a representation of the second symbolic expression.
    Type: Application
    Filed: January 27, 2023
    Publication date: August 3, 2023
    Inventors: Hayk Martirosyan, Aaron Christopher Miller, Nathan Leo Bucki, Bradley Matthew Solliday, Ryan David Kennedy, Jack Louis Zhu, Teodor Tomic, Yixiao Sun, Josiah Timothy VanderMey, Gareth Benoit Cross, Peter Benjamin Henry, Dominic William Pattison, Samuel Shenghung Wang, Kristen Marie Holtz, Harrison Zheng
  • Publication number: 20230204797
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may determine a first acceleration of the UAV based at least on information from an onboard accelerometer received at least one of prior to or during takeoff. The UAV may determine a second acceleration of the UAV based at least on location information received via a satellite positioning system receiver at least one of prior to or during takeoff. The UAV may further determine a relative heading of the UAV based at least in part on the first acceleration and the second acceleration, and may be directed to navigate an environment based at least on the determined relative heading.
    Type: Application
    Filed: February 17, 2023
    Publication date: June 29, 2023
    Inventors: Anurag MAKINENI, Kristen Marie HOLTZ, Gareth Benoit CROSS, Hayk MARTIROSYAN
  • Patent number: 11585949
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may receive location information via the global navigation satellite system (GNSS) receiver and may receive acceleration information via an onboard accelerometer. The UAV may determine a first measurement of acceleration of the UAV in a navigation frame of reference based on information from the accelerometer prior to or during takeoff. In addition, the UAV may determine a second measurement of acceleration of the UAV in a world frame of reference based on the location information received via the GNSS receiver prior to or during takeoff. The UAV may determine a relative heading of the UAV based on the first and second acceleration measurements. The determined relative heading may be used for navigation of the UAV at least one of during or after takeoff of the UAV.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: February 21, 2023
    Assignee: SKYDIO, INC.
    Inventors: Anurag Makineni, Kristen Marie Holtz, Gareth Benoit Cross, Hayk Martirosyan
  • Publication number: 20220315220
    Abstract: Autonomous aerial navigation in low-light and no-light conditions includes using night mode obstacle avoidance intelligence and mechanisms for vision-based unmanned aerial vehicle (UAV) navigation to enable autonomous flight operations of a UAV in low-light and no-light environments using infrared data.
    Type: Application
    Filed: October 19, 2021
    Publication date: October 6, 2022
    Inventors: Abraham Galton Bachrach, Adam Parker Bry, Gareth Benoit Cross, Peter Benjamin Henry, Kristen Marie Holtz, Ryan David Kennedy, Hayk Martirosyan, Vladimir Nekrasov, Samuel Shenghung Wang
  • Publication number: 20220120918
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may receive location information via the global navigation satellite system (GNSS) receiver and may receive acceleration information via an onboard accelerometer. The UAV may determine a first measurement of acceleration of the UAV in a navigation frame of reference based on information from the accelerometer prior to or during takeoff. In addition, the UAV may determine a second measurement of acceleration of the UAV in a world frame of reference based on the location information received via the GNSS receiver prior to or during takeoff. The UAV may determine a relative heading of the UAV based on the first and second acceleration measurements. The determined relative heading may be used for navigation of the UAV at least one of during or after takeoff of the UAV.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 21, 2022
    Inventors: Anurag MAKINENI, Kristen Marie HOLTZ, Gareth Benoit CROSS, Hayk MARTIROSYAN
  • Publication number: 20210107682
    Abstract: Described herein are systems for automated docking of an unmanned aerial vehicle. For example, some systems include an unmanned aerial vehicle including a propulsion mechanism, an image sensor, and processing apparatus; and a dock including a landing surface configured to hold the unmanned aerial vehicle and a fiducial on the landing surface, wherein the processing apparatus is configured to: control the propulsion mechanism to cause the unmanned aerial vehicle to fly to a first location in a vicinity of the dock; access one or more images captured using the image sensor; detect the fiducial in at least one of the one or more images; determine a pose of the fiducial based on the one or more images; and control, based on the pose of the fiducial, the propulsion mechanism to cause the unmanned aerial vehicle to land on the landing surface.
    Type: Application
    Filed: August 12, 2020
    Publication date: April 15, 2021
    Inventors: Yevgeniy Kozlenko, Jack Zhu, Gareth Benoit Cross, Teodor Tomic, Adam Bry, Abraham Galton Bachrach
  • Patent number: 10395115
    Abstract: The present subject matter relates to systems, devices, and methods for data-driven precision agriculture through close-range remote sensing with a versatile imaging system. This imaging system can be deployed onboard low-flying unmanned aerial vehicles (UAVs) and/or carried by human scouts. Additionally, the present technology stack can include methods for extracting actionable intelligence from the rich datasets acquired by the imaging system, as well as visualization techniques for efficient analysis of the derived data products. In this way, the present systems and methods can help specialty crop growers reduce costs, save resources, and optimize crop yield.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: August 27, 2019
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: R. Vijay Kumar, Gareth Benoit Cross, Chao Qu, Jnaneshwar Das, Anurag Makineni, Yash Shailesh Mulgaonkar
  • Publication number: 20170372137
    Abstract: The present subject matter relates to systems, devices, and methods for data-driven precision agriculture through close-range remote sensing with a versatile imaging system. This imaging system can be deployed onboard low-flying unmanned aerial vehicles (UAVs) and/or carried by human scouts. Additionally, the present technology stack can include methods for extracting actionable intelligence from the rich datasets acquired by the imaging system, as well as visualization techniques for efficient analysis of the derived data products. In this way, the present systems and methods can help specialty crop growers reduce costs, save resources, and optimize crop yield.
    Type: Application
    Filed: January 27, 2016
    Publication date: December 28, 2017
    Inventors: R. Vijay Kumar, Gareth Benoit Cross, Chao Qu, Jnaneshwar Das, Anurag Makineni, Yash Shailesh Mulgaonkar