Patents by Inventor Garo J. Derderian

Garo J. Derderian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10923469
    Abstract: An integrated circuit (IC) includes an active area including at least one active fin-type field effect transistor (FinFET), and a trench isolation adjacent to the active area. At least one inactive gate is positioned over the trench isolation. A vertically extending resistor body is positioned adjacent the at least one inactive gate over the trench isolation. A lower end of the resistor is below an upper surface of the trench isolation. The resistor reduces interconnect layer thickness to improve yield, and significantly reduces resistor footprint to enable scaling.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: February 16, 2021
    Assignee: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Hui Zang, Guowei Xu, Jiehui Shu, Ruilong Xie, Yurong Wen, Garo J. Derderian, Shesh M. Pandey, Laertis Economikos
  • Publication number: 20200227404
    Abstract: An integrated circuit (IC) includes an active area including at least one active fin-type field effect transistor (FinFET), and a trench isolation adjacent to the active area. At least one inactive gate is positioned over the trench isolation. A vertically extending resistor body is positioned adjacent the at least one inactive gate over the trench isolation. A lower end of the resistor is below an upper surface of the trench isolation. The resistor reduces interconnect layer thickness to improve yield, and significantly reduces resistor footprint to enable scaling.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 16, 2020
    Inventors: Hui Zang, Guowei Xu, Jiehui Shu, Ruilong Xie, Yurong Wen, Garo J. Derderian, Shesh M. Pandey, Laertis Economikos
  • Patent number: 10510749
    Abstract: A resistor for an integrated circuit (IC), an IC and a related method are disclosed. The resistor may include a metal alloy resistor body positioned within a single diffusion break (SDB). The SDB provides an isolation region in a semiconductor fin between a pair of fin-type field effect transistors (finFETs). The resistor in the SDB allows for the resistor to be built at front-end-of-line (FEOL) layers, which saves on space and expense, and allows for precise dimensions for the resistor.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: December 17, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hui Zang, Ruilong Xie, Laertis Economikos, Garo J. Derderian
  • Patent number: 10276374
    Abstract: The disclosure is directed to methods for forming a set of fins from a substrate. One embodiment of the disclosure includes: providing a stack over the substrate, the stack including a first oxide over the substrate, a first nitride over the pad oxide, a second oxide over the first nitride, and a first hardmask over the second oxide; patterning the first hard mask to form a first set of hardmask fins over the second oxide; oxidizing the first set of hardmask fins to convert the first set of hardmask fins into a set of oxide fins; using the set of oxide fins as a mask, etching the second oxide and the first nitride to expose portions of the first oxide thereunder such that remaining portions of the second oxide and the first nitride remain disposed beneath the set of oxide fins thereby defining a set of mask stacks; and using the set of mask stacks as a mask, etching the exposed portions of the first oxide and the substrate thereby forming the set of fins from the substrate.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: April 30, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jiehui Shu, Garo J. Derderian, Jinping Liu
  • Publication number: 20190088478
    Abstract: The disclosure is directed to methods for forming a set of fins from a substrate. One embodiment of the disclosure includes: providing a stack over the substrate, the stack including a first oxide over the substrate, a first nitride over the pad oxide, a second oxide over the first nitride, and a first hardmask over the second oxide; patterning the first hard mask to form a first set of hardmask fins over the second oxide; oxidizing the first set of hardmask fins to convert the first set of hardmask fins into a set of oxide fins; using the set of oxide fins as a mask, etching the second oxide and the first nitride to expose portions of the first oxide thereunder such that remaining portions of the second oxide and the first nitride remain disposed beneath the set of oxide fins thereby defining a set of mask stacks; and using the set of mask stacks as a mask, etching the exposed portions of the first oxide and the substrate thereby forming the set of fins from the substrate.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Inventors: Jiehui Shu, Garo J. Derderian, Jinping Liu
  • Patent number: 9159418
    Abstract: A three-dimensional (3-D) memory stack and a method of formation thereof are described. The 3-D memory stack includes a number of vertically stacked memory devices. Each memory device includes one or more memory cells. Each of the memory cells can be formed on a conductive material. Each memory device further includes one or more selector elements each configured to couple a memory cell of the one or more memory cells to a respective bit line. None of the selector elements is configured as a diode or a transistor element.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: October 13, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Jonathan W. Ward, Adrian N. Robinson, Garo J. Derderian
  • Publication number: 20140353728
    Abstract: A method of capacitance reduction in a middle-of-the-line (MOL) nitride stack and a resulting device are disclosed. Embodiments include forming an oxide layer between one or more semiconductor devices on a wafer, the one or more semiconductor devices having source/drain junctions therebetween, forming a nitride layer over the one or more semiconductor devices and the oxide layer, forming a sacrificial oxide layer over the nitride layer, forming trenches through the oxide layer, the nitride layer, and the sacrificial oxide layer down to the source/drain junctions, forming a silicide in the trenches and on an upper surface of the sacrificial oxide layer, planarizing the silicide down to a point in the sacrificial oxide layer, and removing remaining sacrificial oxide to expose the nitride layer and a portion of the silicide protruding from an upper surface of the nitride layer.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 4, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventor: Garo J. Derderian
  • Patent number: 8822352
    Abstract: Metal nitride coatings containing carbon can be either electrically conductive or substantially non-conductive depending on the degree to which they have been exposed to an oxidative environment. Substantially non-conductive metal nitride coatings can be used as protective layers in electrical devices. Particularly in an electrical device containing carbon nanomaterials, the metal nitride coatings can be used to mask the device's operational characteristics. Such devices can contain an electrical interconnect containing a carbon nanomaterial and a substantially non-conductive coating on the carbon nanomaterial. The substantially non-conductive coating can contain at least one substantially non-conductive metal nitride layer and at least some carbon. Methods for making such devices and metal nitride coatings are also described herein.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: September 2, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Garo J. Derderian, Jonathan W. Ward
  • Patent number: 8816447
    Abstract: Devices such as transistors having an oxide layer that provide a depletion field in a conduction channel. A barrier layer is formed over the oxide layer. A gate electrode is formed over the barrier layer. The barrier layer and gate electrode are configured to reduce the width of the depletion field absent a voltage applied to the gate electrode.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: August 26, 2014
    Assignee: Round Rock Research, LLC
    Inventors: Shuang Meng, Garo J. Derderian, Gurtej S. Sandhu
  • Publication number: 20140151857
    Abstract: A method and apparatus are presented for reducing halide-based contamination within deposited titanium-based thin films. Halide adsorbing materials are utilized within the deposition chamber to remove halides, such as chlorine and chlorides, during the deposition process so that contamination of the titanium-based film is minimized. A method for regenerating the halide adsorbing material is also provided.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Cem Basceri, Donald L. Westmoreland
  • Patent number: 8691015
    Abstract: A method and apparatus are presented for reducing halide-based contamination within deposited titanium-based thin films. Halide adsorbing materials are utilized within the deposition chamber to remove halides, such as chlorine and chlorides, during the deposition process so that contamination of the titanium-based film is minimized. A method for regenerating the halide adsorbing material is also provided.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: April 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Cem Basceri, Donald L. Westmoreland
  • Patent number: 8618662
    Abstract: Metal nitride coatings containing carbon can be either electrically conductive or substantially non-conductive depending on the degree to which they have been exposed to an oxidative environment. Substantially non-conductive metal nitride coatings can be used as protective layers in electrical devices. Particularly in an electrical device containing carbon nanomaterials, the metal nitride coatings can be used to mask the device's operational characteristics. Such devices can contain an electrical interconnect containing a carbon nanomaterial and a substantially non-conductive coating on the carbon nanomaterial. The substantially non-conductive coating can contain at least one substantially non-conductive metal nitride layer and at least some carbon. Methods for making such devices and metal nitride coatings are also described herein.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 31, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Garo J. Derderian, Jonathan W. Ward
  • Patent number: 8604459
    Abstract: Electrical devices containing carbon nanotubes can be passivated to protect the carbon nanotubes from degradation while substantially preserving the carbon nanotubes' electrical conductivity and switching characteristics. Such electrical devices can include a first metal contact, a switching layer containing a plurality of carbon nanotubes disposed on the first metal contact, a passivation layer containing amorphous carbon, a metal carbide, or any combination thereof that is disposed on at least a top surface of the switching layer, and a second metal contact disposed upon the passivation layer. Methods for forming the electrical devices can include disposing a passivation layer containing amorphous carbon on at least a top surface of the switching layer, and optionally heating to at least partially convert the amorphous carbon within the passivation layer into a metal carbide.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: December 10, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Jonathan W. Ward, Garo J. Derderian
  • Publication number: 20130231240
    Abstract: A method and apparatus are presented for reducing halide-based contamination within deposited titanium-based thin films. Halide adsorbing materials are utilized within the deposition chamber to remove halides, such as chlorine and chlorides, during the deposition process so that contamination of the titanium-based film is minimized. A method for regenerating the halide adsorbing material is also provided.
    Type: Application
    Filed: April 8, 2013
    Publication date: September 5, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Cem Basceri, Donald L. Westmoreland
  • Patent number: 8470686
    Abstract: Methods for forming dielectric layers, and structures and devices resulting from such methods, and systems that incorporate the devices are provided. The invention provides an aluminum oxide/silicon oxide laminate film formed by sequentially exposing a substrate to an organoaluminum catalyst to form a monolayer over the surface, remote plasmas of oxygen and nitrogen to convert the organoaluminum layer to a porous aluminum oxide layer, and a silanol precursor to form a thick layer of silicon dioxide over the porous oxide layer. The process provides an increased rate of deposition of the silicon dioxide, with each cycle producing a thick layer of silicon dioxide of about 120 ? over the layer of porous aluminum oxide.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: June 25, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Chris W. Hill, Garo J. Derderian
  • Patent number: 8435886
    Abstract: A method and apparatus are presented for reducing halide-based contamination within deposited titanium-based thin films. Halide adsorbing materials are utilized within the deposition chamber to remove halides, such as chlorine and chlorides, during the deposition process so that contamination of the titanium-based film is minimized. A method for regenerating the halide adsorbing material is also provided.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: May 7, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Cem Basceri, Donald L. Westmoreland
  • Patent number: 8362576
    Abstract: Atomic layer deposition is enhanced using plasma. Plasma begins prior to flowing a second precursor into a chamber. The second precursor reacts with a first precursor to deposit a layer on a substrate. The layer may include at least one element from each of the first and second precursors. The layer may be TaN, and the precursors may be TaF5 and NH3. The plasma may begin during purge gas flow between a pulse of the first precursor and a pulse of the second precursor. Thermal energy assists the reaction of the precursors to deposit the layer on the substrate. The thermal energy may be greater than generally accepted for ALD (e.g., more than 300 degrees Celsius).
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: January 29, 2013
    Assignee: Round Rock Research, LLC
    Inventors: Shuang Meng, Garo J. Derderian, Gurtej S. Sandhu
  • Publication number: 20120276750
    Abstract: A method and apparatus are presented for reducing halide-based contamination within deposited titanium-based thin films. Halide adsorbing materials are utilized within the deposition chamber to remove halides, such as chlorine and chlorides, during the deposition process so that contamination of the titanium-based film is minimized. A method for regenerating the halide adsorbing material is also provided.
    Type: Application
    Filed: July 3, 2012
    Publication date: November 1, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Garo J. Derderian, Cem Basceri, Donald L. Westmoreland
  • Patent number: 8257497
    Abstract: Systems and methods for insitu post atomic layer deposition (ALD) destruction of active species are provided. ALD processes deposit multiple atomic layers on a substrate. Pre-cursor gases typically enter a reactor and react with the substrate resulting in a monolayer of atoms. After the remaining gas is purged from the reactor, a second pre-cursor gas enters the reactor and the process is repeated. The active species of some pre-cursor gases do not readily purge from the reactor, thus increasing purge time and decreasing throughput. A high-temperature surface placed in the reactor downstream from the substrate substantially destroys the active species insitu. Substantially destroying the active species allows the reactor to be readily purged, increasing throughput.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: September 4, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Demetrius Sarigiannis, Shuang Meng, Garo J Derderian
  • Patent number: 8253171
    Abstract: A two terminal switching device includes a first conductive terminal, a second conductive terminal in spaced relation to the first terminal, the first terminal encompassed by the second terminal. The device also includes an electrically insulating spacer that encompasses the first terminal and provides the spaced relation between the second terminal and the first terminal. It also includes a nanotube article comprising at least one carbon nanotube, the nanotube article being arranged to overlap at least a portion of each of the first and second terminals. The device also includes a stimulus circuit in electrical communication with at least one of the first and second terminals that is capable of applying a first electrical stimulus to at least one of the first and second terminals to change the resistance of the device between the first and second terminals from a relatively low resistance to a relatively high resistance.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: August 28, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Garo J. Derderian, Michael J. O'Connor, Adrian N. Robinson, Jonathan W. Ward