Patents by Inventor Garret A. Odom

Garret A. Odom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12000676
    Abstract: Optical sensors and particularly gimbaled optical sensors transmit an active signal at a given wavelength(s) and receive passive signals over a range of wavelengths and the active signal in a common aperture. The sensor includes a Tx/Rx Aperture Sharing Element (ASE) configured with a center region that couples the active signal to the telescope for transmission and an annular region that couples the passive emissions and the returned active signal to the detector. A filter wheel may be positioned behind the ASE to present separate passive and active images to the detector. These optical sensors may, for example, be used with guided munitions or autonomous vehicles.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: June 4, 2024
    Assignee: Raytheon Company
    Inventors: Eric Rogala, Garret A. Odom, Gerald P. Uyeno, Sean D. Keller, Benn H. Gleason
  • Publication number: 20240094533
    Abstract: An apparatus, system, and method for a lens assembly for a head-mounted device includes a frame and a lens assembly. The lens assembly is configured to be carried by the frame. The lens assembly includes a lens bulk, an edge thickness, and a power layer. The edge thickness includes a predetermined thickness value that is configured to be compatible with (e.g., a slot in) the frame. The power layer is configured to be set to one of a number of predetermined power levels while maintaining the edge thickness within the predetermined thickness value. The power layer is configured to define a course power level of the lens assembly (e.g., in the range of ?6.00 D to +6.00 D).
    Type: Application
    Filed: August 24, 2023
    Publication date: March 21, 2024
    Inventors: Sho Nakahara, Garret Odom, Carl Chancy
  • Publication number: 20230393399
    Abstract: An optical element may include two or more zones to perform functions in a head-mounted display (HMD) device. An optical component may include a first optical zone characterized by a first sag profile to correct a refractive error of an eye of a user and a second optical zone characterized by a second sag profile to redirect a path of an illumination light beam. A transition zone located between the first optical zone and the second optical zone may provide a smooth transition between the first optical zone and the second optical zone.
    Type: Application
    Filed: June 2, 2022
    Publication date: December 7, 2023
    Applicant: Meta Platforms Technologies, LLC
    Inventors: Garret Odom, Robin Sharma, Neil Naples, Qi Zhang
  • Patent number: 11835705
    Abstract: Optical sensors and particularly gimbaled optical sensors transmit an active signal at a given wavelength and receive passive signals over a range of wavelengths while controlling pointing without benefit of measuring and locating the active signal return. The sensor includes a Tx/Rx Aperture Sharing Element (ASE) is configured to block the received active signal (e.g. reflections off a target in a scene) and process only the passive emissions. These optical sensors may, for example, be used with guided munitions or autonomous vehicles.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: December 5, 2023
    Assignee: Raytheon Company
    Inventors: Gerald P. Uyeno, Eric Rogala, Mark K. Lange, Sean D. Keller, Vanessa Reyna, Benn H. Gleason, Craig O. Shott, Garret A. Odom, Jon E. Leigh
  • Patent number: 11835709
    Abstract: A beam steering architecture for an optical sensor is based upon a pair of Micro-Electro-Mechanical System (MEMS) Micro-Mirror Arrays (MMAs) and a fold mirror. The MEMS MMAs scan both primary and secondary FOR providing considerable flexibility to scan a scene to provide not only active imaging (to supplement passive imaging) but also simultaneously allowing for other optical functions such as establishing a communications link, providing an optical transmit beam for another detection platform or determining a range to target. A special class of MEMS MMAs that provides a “piston” capability in which the individual mirrors may translate enables a suite of optical functions to “shape” the optical transmit beam.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: December 5, 2023
    Assignee: Raytheon Company
    Inventors: Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Craig O. Shott, Jon E. Leigh, Garret A. Odom
  • Patent number: 11644542
    Abstract: An optical sensor uses a MEMS MMA to scan a narrow laser beam over a transmit FOR to provide active illumination and to correct the beam profile (e.g., collimate the beam, reduce chromatic aberrations, correct the beam profile or wavefront). A staring detector senses light within a receive FOR that at least partially overlaps the transmit FOR. By completely eliminating the dual-axis gimbal, this sensor architecture greatly reduces the volume and weight of the optical sensor while avoiding the deficiencies of known systems associated with either fiber or free-space coupling of the laser beam into an existing receiver.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: May 9, 2023
    Assignee: Raytheon Company
    Inventors: Craig O. Shott, Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Garret A. Odom, Jon E. Leigh
  • Publication number: 20230087666
    Abstract: An optical sensor uses a MEMS MMA to scan a narrow laser beam over a transmit FOR to provide active illumination and to correct the beam profile (e.g., collimate the beam, reduce chromatic aberrations, correct the beam profile or wavefront). A staring detector senses light within a receive FOR that at least partially overlaps the transmit FOR. By completely eliminating the dual-axis gimbal, this sensor architecture greatly reduces the volume and weight of the optical sensor while avoiding the deficiencies of known systems associated with either fiber or free-space coupling of the laser beam into an existing receiver.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Inventors: Craig O. Shott, Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Garret A. Odom, Jon E. Leigh
  • Publication number: 20230022548
    Abstract: An optical scanning system includes one or more Micro-Electro-Mechanical System (MEMS) Micro-Mirror Arrays (MMAs) used to scan a field-of-view (FOV) over a field-of-regard (FOR). The MEMS MMA is configured such that optical radiation from each point in the FOV does not land on or originate from out-of-phase mirror segments and a diffraction limited resolution of the optical system is limited by the size of the entrance pupil and not by the size of individual mirrors.
    Type: Application
    Filed: April 15, 2021
    Publication date: January 26, 2023
    Inventors: David J. Knapp, Gerald P. Uyeno, Sean D. Keller, Benn H. Gleason, Eric Rogala, Mark K. Lange, Garret A. Odom, Craig O. Shott, Zachary D. Barker
  • Publication number: 20220252865
    Abstract: A beam steering architecture for an optical sensor is based upon a pair of Micro-Electro-Mechanical System (MEMS) Micro-Mirror Arrays (MMAs) and a fold mirror. The MEMS MMAs scan both primary and secondary FOR providing considerable flexibility to scan a scene to provide not only active imaging (to supplement passive imaging) but also simultaneously allowing for other optical functions such as establishing a communications link, providing an optical transmit beam for another detection platform or determining a range to target. A special class of MEMS MMAs that provides a “piston” capability in which the individual mirrors may translate enables a suite of optical functions to “shape” the optical transmit beam.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 11, 2022
    Inventors: Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Craig O. Shott, Jon E. Leigh, Garret A. Odom
  • Publication number: 20220121035
    Abstract: Optical sensors and particularly gimbaled optical sensors transmit an active signal at a given wavelength(s) and receive passive signals over a range of wavelengths and the active signal in a common aperture. The sensor includes a Tx/Rx Aperture Sharing Element (ASE) configured with a center region that couples the active signal to the telescope for transmission and an annular region that couples the passive emissions and the returned active signal to the detector. A filter wheel may be positioned behind the ASE to present separate passive and active images to the detector. These optical sensors may, for example, be used with guided munitions or autonomous vehicles.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 21, 2022
    Inventors: Eric Rogala, Garret A. Odom, Gerald P. Uyeno, Sean D. Keller, Benn H. Gleason
  • Publication number: 20220107490
    Abstract: Optical sensors and particularly gimbaled optical sensors transmit an active signal at a given wavelength and receive passive signals over a range of wavelengths while controlling pointing without benefit of measuring and locating the active signal return. The sensor includes a Tx/Rx Aperture Sharing Element (ASE) is configured to block the received active signal (e.g. reflections off a target in a scene) and process only the passive emissions. These optical sensors may, for example, be used with guided munitions or autonomous vehicles.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 7, 2022
    Inventors: Gerald P. Uyeno, Eric Rogala, Mark K. Lange, Sean D. Keller, Vanessa Reyna, Benn H. Gleason, Craig O. Shott, Garret A. Odom, Jon E. Leigh
  • Publication number: 20200073023
    Abstract: Aspects of the present disclosure are directed to an optical system including a solid immersion lens including a first surface and a second surface, and a focal plane array comprising a plurality of pixels, the focal plane array being configured to be in optical contact with the first surface of the solid immersion lens. In one embodiment, the first surface is a planar surface and the second surface is a non-planar surface. In an embodiment, the solid immersion lens is an aspherical lens.
    Type: Application
    Filed: August 28, 2018
    Publication date: March 5, 2020
    Inventors: Michael R. Beversluis, Garret A. Odom