Patents by Inventor Garrett Andrew Piech

Garrett Andrew Piech has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210269357
    Abstract: Silica-containing substrates including vias with a narrow waist, electronic devices incorporating a silica-containing substrate, and methods of forming vias with narrow waist in silica-containing substrates are disclosed. In one embodiment, an article includes a silica-containing substrate including greater than or equal to 85 mol % silica, a first surface, a second surface opposite the first surface, and a via extending through the silica-containing substrate from the first surface toward the second surface. The via includes a first diameter at the first surface wherein the first diameter is less than or equal to 100 ?m, a second diameter at the second surface wherein the first diameter is less than or equal to 100 ?m, and a via waist between the first surface and the second surface. The via waist has a waist diameter that is less than the first diameter and the second diameter such that a ratio between the waist diameter and each of the first diameter and the second diameter is less than or equal to 75%.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Inventors: Rachel Eileen Dahlberg, Tian Huang, Yuhui Jin, Garrett Andrew Piech, Daniel Ohen Ricketts
  • Patent number: 11078112
    Abstract: Silica-containing substrates including vias with a narrow waist, electronic devices incorporating a silica-containing substrate, and methods of forming vias with narrow waist in silica-containing substrates are disclosed. In one embodiment, an article includes a silica-containing substrate including greater than or equal to 85 mol % silica, a first surface, a second surface opposite the first surface, and a via extending through the silica-containing substrate from the first surface toward the second surface. The via includes a first diameter at the first surface wherein the first diameter is less than or equal to 100 ?m, a second diameter at the second surface wherein the first diameter is less than or equal to 100 ?m, and a via waist between the first surface and the second surface. The via waist has a waist diameter that is less than the first diameter and the second diameter such that a ratio between the waist diameter and each of the first diameter and the second diameter is less than or equal to 75%.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: August 3, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Rachel Eileen Dahlberg, Tian Huang, Yuhui Jin, Garrett Andrew Piech, Daniel Ohen Ricketts
  • Patent number: 11059131
    Abstract: A method for laser processing a substrate stack includes forming a defect in a transparent workpiece of the substrate stack having a black matrix layer. Forming the defect includes directing a portion of a pulsed laser beam into the transparent workpiece. The pulsed laser beam includes a wavelength ?, a spot size wo, and a Rayleigh range ZR that is greater than F D ? ? ? ? w 0 , 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater. The pulsed laser beam directed into the transparent workpiece of the substrate stack forms a pulsed laser beam focal line disposed within the transparent workpiece, where a center of the pulsed laser beam focal line is offset from an edge of the black matrix layer by a distance that is about 20% or less of a total thickness of the substrate stack and generates an induced absorption within the transparent workpiece.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: July 13, 2021
    Assignee: Corning Incorporated
    Inventors: Garrett Andrew Piech, Kristopher Allen Wieland
  • Publication number: 20210206693
    Abstract: A liquid lens that includes: a lens body comprising a first window, a second window, and a cavity disposed between the first window and the second window; and a first liquid and a second liquid within the cavity of the lens body, the first liquid and the second liquid substantially immiscible with each other and having different refractive indices such that an interface between the first liquid and second liquid to form a lens. The sidewall of the cavity has an average surface roughness (Ra) of less than or equal to 200 nanometers (nm). The cavity is disposed within a plate. Further, each of the windows and the plate comprises a glass, glass-ceramic or ceramic composition. In addition, a linearity of a first bottom portion of the sidewall in proximity to the base of the plate can be from 0 ?m±5 ?m.
    Type: Application
    Filed: May 20, 2019
    Publication date: July 8, 2021
    Inventors: Michael Peter Gaj, Garrett Andrew Piech, Nickolaos Savidis
  • Patent number: 11052481
    Abstract: A method for processing a transparent workpiece includes directing a pulsed laser beam into the transparent workpiece such that a portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece, thereby forming a damage line within the transparent workpiece, and the portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, a spot size w0, and a Rayleigh range ZR that is greater than F D ? ? ? w 0 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater. Further, the method for processing the transparent workpiece includes etching the transparent workpiece with an etching vapor to remove at least a portion of the transparent workpiece along the damage line, thereby forming an aperture extending through the at least a portion of the thickness of the transparent workpiece.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: July 6, 2021
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Andreas Simon Gaab, Garrett Andrew Piech, Alranzo Boh Ruffin, Daniel Arthur Sternquist, Michael Brian Webb
  • Publication number: 20210086294
    Abstract: A method of separating a portion of an object comprising: presenting an object having a thickness; using a laser emission at a wavelength to perforate at least a portion of the thickness of the object sequentially over a length to form a series of perforations between a first portion of the object on one side of the series of perforations and a second portion of the object on the other side of the series of perforations; and applying a stress to the object at the series of perforations to separate the first portion of the object from the second portion of the object, wherein the thickness of the object, at the series of perforations, is transparent to the wavelength of the laser emission.
    Type: Application
    Filed: February 22, 2019
    Publication date: March 25, 2021
    Inventors: Hasan Fiaz, Jann Paul Kaminski, Raymond Miller Karam, Brian Nilsen, Marie Bernadette O'Regan, Garrett Andrew Piech, Charles Jueilei Wang, Ming Ying
  • Publication number: 20200331793
    Abstract: A method for laser processing a transparent workpiece includes forming a contour line that includes defects, by directing a pulsed laser beam output by a beam source through an aspheric optical element positioned offset in a radial direction from the beam pathway and into the transparent workpiece such that the portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece that produces a defect within the transparent workpiece. The portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, an effective spot size wo,eff, and a non-axisymmetric beam cross section having a minimum Rayleigh range ZRx,min in an x-direction and a minimum Rayleigh range ZRy,min in a y-direction. Further, the smaller of ZRx,min and ZRy,min is greater than FD?w0,eff2/?, where FD is a dimensionless divergence factor comprising a value of 10 or greater.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 22, 2020
    Inventors: Ravindra Kumar Akarapu, Garrett Andrew Piech, Sergio Tsuda, James Andrew West
  • Patent number: 10756003
    Abstract: A process comprises bonding a semiconductor wafer to an inorganic wafer. The semiconductor wafer is opaque to a wavelength of light to which the inorganic wafer is transparent. After the bonding, a damage track is formed in the inorganic wafer using a laser that emits the wavelength of light. The damage track in the inorganic wafer is enlarged to form a hole through the inorganic wafer by etching. The hole terminates at an interface between the semiconductor wafer and the inorganic wafer. An article is also provided, comprising a semiconductor wafer bonded to an inorganic wafer. The semiconductor wafer is opaque to a wavelength of light to which the inorganic wafer is transparent. The inorganic wafer has a hole formed through the inorganic wafer. The hole terminates at an interface between the semiconductor wafer and the inorganic wafer.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: August 25, 2020
    Assignee: Corning Incorporated
    Inventors: Daniel Wayne Levesque, Jr., Garrett Andrew Piech, Aric Bruce Shorey
  • Publication number: 20200254557
    Abstract: A method for processing a transparent workpiece includes directing a pulsed laser beam into the transparent workpiece such that a portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece, thereby forming a damage line within the transparent workpiece, and the portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, a spot size w0, and a Rayleigh range ZR that is greater than F D ? ? ? w 0 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater. Further, the method for processing the transparent workpiece includes etching the transparent workpiece with an etching vapor to remove at least a portion of the transparent workpiece along the damage line, thereby forming an aperture extending through the at least a portion of the thickness of the transparent workpiece.
    Type: Application
    Filed: January 29, 2020
    Publication date: August 13, 2020
    Inventors: Heather Debra Boek, Andreas Simon Gaab, Garrett Andrew Piech, Alranzo Boh Ruffin, Daniel Arthur Sternquist, Michael Brian Webb
  • Patent number: 10730783
    Abstract: A method for laser processing a transparent workpiece includes forming a contour line that includes defects, by directing a pulsed laser beam output by a beam source through an aspheric optical element positioned offset in a radial direction from the beam pathway and into the transparent workpiece such that the portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece that produces a defect within the transparent workpiece. The portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, an effective spot size wo,eff, and a non-axisymmetric beam cross section having a minimum Rayleigh range ZRx,min in an x-direction and a minimum Rayleigh range ZRy,min in a y-direction. Further, the smaller of ZRx,min and ZRy,min is greater than F D ? ? ? ? w 0 , eff 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 4, 2020
    Assignee: Corning Incorporated
    Inventors: Ravindra Kumar Akarapu, Garrett Andrew Piech, Sergio Tsuda, James Andrew West
  • Publication number: 20200163233
    Abstract: A tiled display having pixels arranged in rows and columns, and including first and second tiles. The tiles comprise a substrate carrying a matrix of pixels arranged at a pixel pitch. The substrates comprise an edge extending between opposing faces in a depth direction. The substrate edges have a complementary shape, and face one another to establish a seam. The pixel pitch is maintained across the seam. Pixels of the second tile are not interposed between pixels of the first tile. The complementary shape includes a segment of the seam being oblique to the pixel rows, or the substrate edge of the first tile profiled in the depth direction whereby at least a section of the edge is non-perpendicular to the faces. The tiled display can maintain the pixel pitch at the seams at high resolutions (e.g., pixel pitch less than 0.5 mm).
    Type: Application
    Filed: July 5, 2018
    Publication date: May 21, 2020
    Inventors: Douglas Edward Brackley, Alexander Lee Cuno, Scott Winfield Deming, Sean Matthew Garner, Gregory Scott Glaesemann, Garrett Andrew Piech
  • Patent number: 10611668
    Abstract: The present disclosure relates to a process for cutting and separating arbitrary shapes of thin substrates of transparent materials, particularly tailored composite fusion drawn glass sheets, and the disclosure also relates to a glass article prepared by the method. The developed laser method can be tailored for manual separation of the parts from the panel or full laser separation by thermally stressing the desired profile. The self-separation method involves the utilization of an ultra-short pulse laser that can be followed by a CO2 laser (coupled with high pressure air flow) for fully automated separation.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Stephan Lvovich Logunov, Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Kamjula Pattabhirami Reddy, Pushkar Tandon, Sergio Tsuda, Natesan Venkataraman, Robert Stephen Wagner
  • Patent number: 10597321
    Abstract: Processes of chamfering and/or beveling an edge of a glass substrate of arbitrary shape using lasers are described herein. Two general methods to produce chamfers on glass substrates are the first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser to create perforations within the glass; followed by an ion exchange.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: March 24, 2020
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, David Andrew Pastel, Garrett Andrew Piech, Jose Mario Quintal, Helmut Schillinger, Sergio Tsuda, Robert Stephen Wagner, Andrea Nichole Yeary
  • Patent number: 10578811
    Abstract: Methods of forming a ferrule are disclosed where the ferrule includes an inner member and an outer member. An optical fiber is secured in an axial bore of the inner member, and then offset of a core of the optical fiber from a geometric center of the inner member is determined. The outer member is then formed over the inner member to “correct” for this offset so that the core of the optical fiber ends up closer to the geometric center of the resulting ferrule. Related ferrules and cable assemblies including the same are also disclosed.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 3, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Dana Craig Bookbinder, Garrett Andrew Piech, James Scott Sutherland, Michael Brian Webb, Elvis Alberto Zambrano
  • Patent number: 10525657
    Abstract: A gas permeable glass window, suitable for use with liquid interface additive manufacturing, has an optically transparent glass article greater than about 0.5 millimeters in thickness defining a first surface and a second surface. A plurality of gas channels are disposed through the article from the first surface to the second surface. The gas channels occupy less than about 1.0% of a surface area of the article and are configured such that the article has a gas permeability between about 10 barrers and about 2000 barrers.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: January 7, 2020
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Kristopher Allen Wieland
  • Patent number: 10522963
    Abstract: A method of laser processing a workpiece includes: focusing a pulsed laser beam into a laser beam focal line directed into the workpiece such that the laser beam focal line generates an induced absorption and produces a defect line along the laser beam focal line within the workpiece. The laser beam focal line has length L and a substantially uniform intensity profile such that the peak intensity distribution over at least 85% of the length L of the focal line does not vary by more 40%, and in some embodiments by no more than 30 or 20% from its mean peak intensity.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: December 31, 2019
    Assignee: Corning Incorporated
    Inventors: Lovell Eglin Comstock, II, Jaques Gollier, Thien An Thi Nguyen, Garrett Andrew Piech, Mark Ranney Westcott
  • Publication number: 20190389007
    Abstract: A method for laser processing a substrate stack includes forming a defect in a transparent workpiece of the substrate stack having a black matrix layer. Forming the defect includes directing a portion of a pulsed laser beam into the transparent workpiece. The pulsed laser beam includes a wavelength ?, a spot size wo, and a Rayleigh range ZR that is greater than F D ? ? ? ? w 0 , 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater. The pulsed laser beam directed into the transparent workpiece of the substrate stack forms a pulsed laser beam focal line disposed within the transparent workpiece, where a center of the pulsed laser beam focal line is offset from an edge of the black matrix layer by a distance that is about 20% or less of a total thickness of the substrate stack and generates an induced absorption within the transparent workpiece.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 26, 2019
    Inventors: Garrett Andrew Piech, Kristopher Allen Wieland
  • Publication number: 20190321922
    Abstract: Methods of reshaping ferrules used in optical fiber cables assemblies are disclosed. The reshaping methods reduce a core-to-ferrule concentricity error (E), which improves coupling efficiency and optical transmission. The methods include measuring a true center of the ferrule, wherein the true center is based on an outer surface of the ferrule; and reshaping at least a portion of the ferrule to change the true center of the ferrule, wherein the reshaping includes enlarging a portion of the ferrule. A variety of reshaping techniques are also disclosed.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Dana Craig Bookbinder, Boyang Lin, Garrett Andrew Piech, Steven Ross Sims, James Scott Sutherland, Michael Brian Webb, Elvis Alberto Zambrano
  • Publication number: 20190321921
    Abstract: Methods for forming holes in a substrate by reducing back reflections of a quasi-non-diffracting beam into the substrate are described herein. In some embodiments, a method of processing a substrate having a first surface and a second surface includes applying an exit material to the second surface of the substrate, wherein a difference between a refractive index of the exit material and a refractive index of the substrate is 0.4 or less, and focusing a pulsed laser beam into a quasi-non-diffracting beam directed into the substrate such that the quasi-non-diffracting beam enters the substrate through the first surface. The substrate is transparent to at least one wavelength of the pulsed laser beam. The quasi-non-diffracting beam generates an induced absorption within the substrate that produces a damage track within the substrate.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 24, 2019
    Inventors: Bertrand Paris, Garrett Andrew Piech, Kristopher Allen Wieland
  • Patent number: 10442719
    Abstract: Processes of chamfering and/or beveling an edge of a glass or other substrate of arbitrary shape using lasers are described herein. Three general methods to produce chamfers on glass substrates are disclosed. The first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser. Treatment with the ultra-short laser may be optionally followed by a CO2 laser for fully automated separation. The second method is based on thermal stress peeling of a sharp edge corner, and it has been demonstrated to work with different combination of an ultrashort pulse and/or CO2 lasers. A third method relies on stresses induced by ion exchange to effect separation of material along a fault line produced by an ultra-short laser to form a chamfered edge of desired shape.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: October 15, 2019
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Helmut Schillinger, Sergio Tsuda, Robert Stephen Wagner