Patents by Inventor Garrett Beget

Garrett Beget has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110106117
    Abstract: A tissue shaping device adapted to be deployed in a lumen to modify the shape of target tissue adjacent to the lumen. In one embodiment the device includes first and second anchors; a connector disposed between the first and second anchors; and a focal deflector disposed between the first and second anchors and may be adapted to extend away from the lumen axis and toward the target tissue and/or away from the lumen axis and away from the target tissue when the device is deployed in the lumen. The invention is also a method of modifying target tissue shape. The method includes the steps of providing a tissue shaping device comprising proximal and distal anchors, a connector disposed between the proximal and distal anchors, and a focal deflector; placing the tissue shaping device in a lumen adjacent the target tissue; applying a shaping force from the focal deflector against a lumen wall to modify the shape of the target tissue; and expanding the proximal and distal anchors to anchor the device in the lumen.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 5, 2011
    Applicant: Cardiac Dimensions, Inc.
    Inventors: Mark L. Mathis, David Reuter, Lucas Gordon, Cruz Beeson, Garrett Beget, Frederick Stewart
  • Patent number: 7887582
    Abstract: A tissue shaping device adapted to be deployed in a lumen to modify the shape of target tissue adjacent to the lumen. In one embodiment the device includes first and second anchors; a connector disposed between the first and second anchors; and a focal deflector disposed between the first and second anchors and may be adapted to extend away from the lumen axis and toward the target tissue and/or away from the lumen axis and away from the target tissue when the device is deployed in the lumen. The invention is also a method of modifying target tissue shape. The method includes the steps of providing a tissue shaping device comprising proximal and distal anchors, a connector disposed between the proximal and distal anchors, and a focal deflector; placing the tissue shaping device in a lumen adjacent the target tissue; applying a shaping force from the focal deflector against a lumen wall to modify the shape of the target tissue; and expanding the proximal and distal anchors to anchor the device in the lumen.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: February 15, 2011
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Mark L. Mathis, David Reuter, Lucas Gordon, Cruz Beeson, Garrett Beget, Frederick Stewart
  • Patent number: 7837728
    Abstract: One aspect of the invention is a method of treating mitral valve regurgitation in a patient. The method includes the steps of delivering a tissue shaping device to the patient's coronary sinus in an unexpanded configuration within a catheter having an outer diameter no more than nine or ten french, with the tissue shaping device including a connector disposed between a distal expandable anchor comprising flexible wire and a proximal expandable anchor comprising flexible wire, the device having a length of 60 mm or less; and deploying the device to reduce mitral valve regurgitation, such as by anchoring the distal expandable anchor by placing the distal expandable anchor flexible wire in contact with a wall of the coronary sinus, e.g., by permitting the distal expandable anchor to self-expand or by applying an actuating force to the distal expandable anchor and possibly locking the distal expandable anchor after performing the applying step. The invention also includes a device for performing the method.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 23, 2010
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Gregory Nieminen, David Reuter, Nathan Aronson, Lucas Gordon, Garrett Beget
  • Patent number: 7503932
    Abstract: The present invention relates to a medical device and uses thereof that supports or changes the shape of tissue near a vessel in which the device is placed. The present invention is particularly useful in reducing mitral valve regurgitation by changing the shape of or supporting a mitral valve annulus. The device includes a support structure, a proximal anchor adapted to be positioned in a superior vena cava, and a distal anchor adapted to be positioned in a coronary sinus. The support structure engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: March 17, 2009
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Mark L. Mathis, Gregory Nieminen, Nathan Aronson, Garrett Beget
  • Publication number: 20080015679
    Abstract: An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.
    Type: Application
    Filed: July 24, 2007
    Publication date: January 17, 2008
    Inventors: Mark Mathis, Gregory Nieminen, Nathan Aronson, Garrett Beget
  • Publication number: 20080015407
    Abstract: An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.
    Type: Application
    Filed: July 24, 2007
    Publication date: January 17, 2008
    Inventors: Mark Mathis, Gregory Nieminen, Nathan Aronson, Garrett Beget
  • Publication number: 20080015680
    Abstract: An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.
    Type: Application
    Filed: July 24, 2007
    Publication date: January 17, 2008
    Inventors: Mark Mathis, Gregory Nieminen, Nathan Aronson, Garrett Beget
  • Publication number: 20070239270
    Abstract: The present invention relates to a medical device and uses thereof that supports or changes the shape of tissue near a vessel in which the device is placed. The present invention is particularly useful in reducing mitral valve regurgitation by changing the shape of or supporting a mitral valve annulus. The device includes a support structure, a proximal anchor adapted to be positioned in a superior vena cava, and a distal anchor adapted to be positioned in a coronary sinus. The support structure engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed.
    Type: Application
    Filed: April 11, 2006
    Publication date: October 11, 2007
    Inventors: Mark Mathis, Gregory Nieminen, Nathan Aronson, Garrett Beget
  • Publication number: 20050137685
    Abstract: One aspect of the invention is a method of treating mitral valve regurgitation in a patient. The method includes the steps of delivering a tissue shaping device to the patient's coronary sinus in an unexpanded configuration within a catheter having an outer diameter no more than nine or ten french, with the tissue shaping device including a connector disposed between a distal expandable anchor comprising flexible wire and a proximal expandable anchor comprising flexible wire, the device having a length of 60 mm or less; and deploying the device to reduce mitral valve regurgitation, such as by anchoring the distal expandable anchor by placing the distal expandable anchor flexible wire in contact with a wall of the coronary sinus, e.g., by permitting the distal expandable anchor to self-expand or by applying an actuating force to the distal expandable anchor and possibly locking the distal expandable anchor after performing the applying step. The invention also includes a device for performing the method.
    Type: Application
    Filed: December 19, 2003
    Publication date: June 23, 2005
    Applicant: Cardiac Dimensions, Inc., a Washington Corporation
    Inventors: Gregory Nieminen, David Reuter, Nathan Aronson, Lucas Gordon, Garrett Beget
  • Publication number: 20050137449
    Abstract: A tissue shaping device adapted to be deployed in a vessel to reshape tissue adjacent to the vessel. In some embodiments the device includes a distal anchor having a flexible wire with at least one bending point and first and second arms extending from the bending point, the first and second arms being adapted to deform about the bending point; a proximal anchor having a flexible wire with at least one bending point and first and second arms extending from the bending point, the first and second arms being adapted to deform about the bending point; and a connector disposed between the distal anchor and the proximal anchor.
    Type: Application
    Filed: December 19, 2003
    Publication date: June 23, 2005
    Applicant: Cardiac Dimensions, Inc.
    Inventors: Gregory Nieminen, Garrett Beget, Nathan Aronson, Lucas Gordon
  • Publication number: 20050027351
    Abstract: A method of treating regurgitation of a mitral valve in a patient's heart. The method includes the steps of: delivering a tissue shaping device to the coronary sinus; and deploying the tissue shaping device to reduce mitral valve regurgitation, the deploying step comprising applying a force through the coronary sinus wall toward the mitral valve solely proximal to a crossover point where a coronary artery passes between a coronary sinus and the mitral valve. The invention is also a set of devices for use in treating mitral valve regurgitation. The set includes a plurality of tissue shaping devices having different lengths, each of the tissue shaping devices being configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than ten french.
    Type: Application
    Filed: December 19, 2003
    Publication date: February 3, 2005
    Applicant: Cardiac Dimensions, Inc. a Washington Corporation
    Inventors: David Reuter, Gregory Nieminen, Nathan Aronson, Lucas Gordon, Garrett Beget, Clif Alferness, Mark Mathis
  • Publication number: 20050010240
    Abstract: A tissue shaping device adapted to be deployed in a lumen to modify the shape of target tissue adjacent to the lumen. In one embodiment the device includes first and second anchors; a connector disposed between the first and second anchors; and a focal deflector disposed between the first and second anchors and may be adapted to extend away from the lumen axis and toward the target tissue and/or away from the lumen axis and away from the target tissue when the device is deployed in the lumen. The invention is also a method of modifying target tissue shape. The method includes the steps of providing a tissue shaping device comprising proximal and distal anchors, a connector disposed between the proximal and distal anchors, and a focal deflector; placing the tissue shaping device in a lumen adjacent the target tissue; applying a shaping force from the focal deflector against a lumen wall to modify the shape of the target tissue; and expanding the proximal and distal anchors to anchor the device in the lumen.
    Type: Application
    Filed: May 5, 2004
    Publication date: January 13, 2005
    Inventors: Mark Mathis, David Reuter, Lucas Gordon, Cruz Beeson, Garrett Beget, Frederick Stewart
  • Publication number: 20040220654
    Abstract: An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.
    Type: Application
    Filed: May 2, 2003
    Publication date: November 4, 2004
    Applicant: Cardiac Dimensions, Inc.
    Inventors: Mark L. Mathis, Gregory D. Nieminen, Nathan Aronson, Garrett Beget
  • Publication number: 20040220657
    Abstract: A tissue shaping device adapted to be disposed in a vessel near a patient's heart to reshape the patient's heart. In one embodiment, the tissue shaping device includes an expandable anchor adapted to contact a wall of the vessel with radially outward force, with the anchor including an expansion energy absorbing element, such as a bending point in a flexible wire anchor. The invention also includes a method of deploying a tissue shaping device in a vessel, in which the tissue shaping device includes an anchor and an expansion energy absorbing element. The method includes the steps of delivering the tissue shaping device to a treatment location within the vessel, expanding the anchor with anchor expansion energy to place a radially outward force on a wall of the vessel, and absorbing at least a portion of the expansion energy in the expansion energy absorbing element.
    Type: Application
    Filed: December 19, 2003
    Publication date: November 4, 2004
    Applicant: Cardiac Dimensions, Inc., a Washington Corporation
    Inventors: Gregory Nieminen, David Reuter, Lucas Gordon, Nathan Aronson, Garrett Beget