Patents by Inventor Garrett Cale Smith

Garrett Cale Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230405339
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 21, 2023
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins
  • Patent number: 11771908
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: October 3, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins
  • Publication number: 20220075208
    Abstract: Embodiments of the technology relate to a contact lens having a core that is covalently coated by a hydrogel layer, and to methods of making such a lens. In one aspect, embodiments provide for a coated contact lens comprising a lens core comprising an outer surface; and a hydrogel layer covalently attached to at least a portion of the outer surface, the hydrogel layer adapted to contact an ophthalmic surface, wherein the hydrogel layer comprises a hydrophilic polymer population having a first PEG species and a second PEG species, the first PEG species being at least partially cross-linked to the second PEG species.
    Type: Application
    Filed: November 19, 2021
    Publication date: March 10, 2022
    Inventors: Karen L. HAVENSTRITE, Victor Wayne MCCRAY, Brandon McNary FELKINS, Douglas Michael ACKERMANN, Garrett Cale SMITH, Paul A. COOK, Evan S. LUXON, Andrew A. MCGIBBON
  • Patent number: 11181754
    Abstract: Embodiments of the technology relate to a contact lens having a core that is covalently coated by a hydrogel layer, and to methods of making such a lens. In one aspect, embodiments provide for a coated contact lens comprising a lens core comprising an outer surface; and a hydrogel layer covalently attached to at least a portion of the outer surface, the hydrogel layer adapted to contact an ophthalmic surface, wherein the hydrogel layer comprises a hydrophilic polymer population having a first PEG species and a second PEG species, the first PEG species being at least partially cross-linked to the second PEG species.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: November 23, 2021
    Assignee: Tangible Science, LLC
    Inventors: Karen L. Havenstrite, Victor Wayne McCray, Brandon McNary Felkins, Douglas Michael Ackermann, Garrett Cale Smith, Paul A. Cook, Evan S. Luxon, Andrew A. McGibbon
  • Publication number: 20210008379
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Application
    Filed: June 24, 2020
    Publication date: January 14, 2021
    Inventors: Douglas Michael ACKERMANN, Daniel PALANKER, James Donald LOUDIN, Garrett Cale SMITH, Victor Wayne MCCRAY, Brandon McNary FELKINS
  • Patent number: 10722718
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: July 28, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins
  • Publication number: 20200033636
    Abstract: Embodiments of the technology relate to a contact lens having a core that is covalently coated by a hydrogel layer, and to methods of making such a lens. In one aspect, embodiments provide for a coated contact lens comprising a lens core comprising an outer surface; and a hydrogel layer covalently attached to at least a portion of the outer surface, the hydrogel layer adapted to contact an ophthalmic surface, wherein the hydrogel layer comprises a hydrophilic polymer population having a first PEG species and a second PEG species, the first PEG species being at least partially cross-linked to the second PEG species.
    Type: Application
    Filed: October 4, 2019
    Publication date: January 30, 2020
    Inventors: Karen L. HAVENSTRITE, Victor Wayne Mccray, Brandon McNary Felkins, Douglas Michael Ackermann, Garrett Cale Smith, Paul A. Cook, Evan S. Luxon, Andrew A. Mcgibbon
  • Publication number: 20190290922
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Application
    Filed: November 19, 2018
    Publication date: September 26, 2019
    Inventors: Douglas Michael ACKERMANN, Daniel PALANKER, James Donald LOUDIN, Garrett Cale SMITH, Victor Wayne McCRAY, Brandon McNary FELKINS
  • Patent number: 10143846
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: December 4, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins
  • Publication number: 20180161128
    Abstract: Disclosed herein are biocompatible dental implant systems comprising: an implant body comprising a top collar; and an abutment comprising a first coupling region and a second coupling region; wherein the first coupling region is mechanically coupled to the top collar, and the second coupling region is mechanically coupled to a crown, and wherein at least a portion of a surface of the abutment includes one or more nanotube arrays, the one or more nanotube arrays comprising a plurality of nanotubes separated by a plurality of empty spaces.
    Type: Application
    Filed: September 25, 2015
    Publication date: June 14, 2018
    Applicant: Nasseo, Inc.
    Inventors: Garrett Cale SMITH, Kayvon POURMIRZAIE
  • Publication number: 20180154161
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 7, 2018
    Inventors: Douglas Michael ACKERMANN, Daniel PALANKER, James Donald LOUDIN, Garrett Cale SMITH, Victor Wayne McCRAY, Brandon McNary FELKINS
  • Patent number: 9395468
    Abstract: Embodiments of the technology relate to a contact lens having a core that is covalently coated by a hydrogel layer, and to methods of making such a lens. In one aspect, embodiments provide for a coated contact lens comprising a lens core comprising an outer surface; and a hydrogel layer covalently attached to at least a portion of the outer surface, the hydrogel layer adapted to contact an ophthalmic surface, wherein the hydrogel layer comprises a hydrophilic polymer population having a first PEG species and a second PEG species, the first PEG species being at least partially cross-linked to the second PEG species.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: July 19, 2016
    Assignee: Ocular Dynamics, LLC
    Inventors: Karen L. Havenstrite, Victor Wayne McCray, Brandon McNary Felkins, Douglas Michael Ackermann, Garrett Cale Smith, Paul A. Cook, Evan S. Luxon, Andrew A. McGibbon
  • Publication number: 20150335900
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Inventors: Douglas Michael ACKERMANN, Daniel PALANKER, James Donald LOUDIN, Garrett Cale SMITH, Victor Wayne MCCRAY, Brandon McNary FELKINS
  • Patent number: 9095723
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: August 4, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins
  • Publication number: 20150088156
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Inventors: Douglas Michael ACKERMANN, Daniel PALANKER, James Donald LOUDIN, Garrett Cale SMITH, Victor Wayne MCCRAY, Brandon McNary FELKINS
  • Patent number: 8918181
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: December 23, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins
  • Publication number: 20140055741
    Abstract: Embodiments of the technology relate to a contact lens having a core that is covalently coated by a hydrogel layer, and to methods of making such a lens. In one aspect, embodiments provide for a coated contact lens comprising a lens core comprising an outer surface; and a hydrogel layer covalently attached to at least a portion of the outer surface, the hydrogel layer adapted to contact an ophthalmic surface, wherein the hydrogel layer comprises a hydrophilic polymer population having a first PEG species and a second PEG species, the first PEG species being at least partially cross-linked to the second PEG species.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 27, 2014
    Inventors: Karen L. Havenstrite, Victor Wayne McCray, Brandon McNary Felkins, Douglas Michael Ackermann, Garrett Cale Smith, Paul A. Cook, Evan S. Luxon, Andrew A. McGibbon
  • Publication number: 20120130398
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 24, 2012
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins