Patents by Inventor Garrett R. Swindlehurst
Garrett R. Swindlehurst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12059667Abstract: The present invention relates to a superior carbon adsorbent with or without a core. In one embodiment the carbon adsorbent of the present invention employs carbon adsorbent powder and an organic binding agent which are combined together with an appropriate solvent in an agglomeration step. In another embodiment the invention contemplates a core-in-shell adsorbent comprising an outer shell composed of a carbon and a non-adsorbing inert inner core. Low temperature processing of these agglomerates substantially preserves the binding agent within the final composition and allows one to prepare adsorbent products of high sphericity. The adsorbents of the invention possess superior characteristics such as higher mass transfer rate and CO2 working capacity for use in a H2PSA process.Type: GrantFiled: February 14, 2019Date of Patent: August 13, 2024Assignee: PRAXAIR TECHNOLOGY, INC.Inventors: Neil A. Stephenson, Philip A. Barrett, Steven J. Pontonio, Nicholas R. Stuckert, Garrett R. Swindlehurst
-
Publication number: 20230338886Abstract: The process of the present invention provides high recovery and low capital cost giving it an economic advantage over previously known purification processes. The present process has particular applicability to the purification of synthesis gases comprising at least hydrogen (H2), carbon monoxide (CO), methane (CH4), CO2, and H2O to obtain a gas stream including at least H2, CO, and CH4, that is substantially free of H2O and CO2. The process also has applicability to the purification of natural gases inclusive of at least CH4, N2, CO2, and H2O to produce a gas stream including at least CH4 and N2, but which is substantially free of H2O and CO2.Type: ApplicationFiled: June 27, 2023Publication date: October 26, 2023Inventors: Luke J. Coleman, Garrett R. Swindlehurst, Katie Held, Kihyung Kim, Werner Leitmayr
-
Patent number: 11731075Abstract: The process of the present invention provides high recovery and low capital cost giving it an economic advantage over previously known purification processes. The present process has particular applicability to the purification of synthesis gases comprising at least hydrogen (H2), carbon monoxide (CO), methane (CH4), CO2, and H2O to obtain a gas stream including at least H2, CO, and CH4, that is substantially free of H2O and CO2. The process also has applicability to the purification of natural gases inclusive of at least CH4, N2, CO2, and H2O to produce a gas stream including at least CH4 and N2, but which is substantially free of H2O and CO2.Type: GrantFiled: October 30, 2020Date of Patent: August 22, 2023Assignee: PRAXAIR TECHNOLOGY, INC.Inventors: Luke J. Coleman, Garrett R. Swindlehurst, Katie Held, Kihyung Kim, Werner Leitmayr
-
Patent number: 11577217Abstract: A carbon adsorbent storage and dispensing system is provided with a structurally modified particulate carbon adsorbent designed with optimal volumetric surface area for a certain range of particle sizes. Bulk density and specific surface area are carefully balanced to ensure the volumetric surface area remains within an optimal range to create high performance, as measured by dispensing capacity of the dopant fluid that is reversibly adsorbed onto the structurally modified particulate carbon adsorbent.Type: GrantFiled: December 12, 2019Date of Patent: February 14, 2023Assignee: Praxair Technology, Inc.Inventors: Neil A. Stephenson, Douglas C. Heiderman, Ashwini K. Sinha, Rachael A. Masin, Garrett R. Swindlehurst, Cynthia A. Hoover, William S. Kane
-
Patent number: 11485637Abstract: The present invention provides for a pressure swing adsorption (PSA) process for the substantial removal of H2O and CO2 from a synthesis gas to obtain a multicomponent product gas substantially free of H2O and CO2 with high recovery of the product gas. Further, the present invention provides an integrated process that achieves sufficiently high H2 and CO recoveries such that compression and recycling of the syngas purification PSA tailgas is not necessary to be economically advantageous compared to the conventional processes.Type: GrantFiled: October 21, 2020Date of Patent: November 1, 2022Assignee: PRAXAIR TECHNOLOGY, INC.Inventors: Luke J. Coleman, Kihyung Kim, Garrett R. Swindlehurst, Minish M. Shah
-
Publication number: 20220040626Abstract: The process of the present invention provides high recovery and low capital cost giving it an economic advantage over previously known purification processes. The present process has particular applicability to the purification of synthesis gases comprising at least hydrogen (H2), carbon monoxide (CO), methane (CH4), CO2, and H2O to obtain a gas stream including at least H2, CO, and CH4, that is substantially free of H2O and CO2. The process also has applicability to the purification of natural gases inclusive of at least CH4, N2, CO2, and H2O to produce a gas stream including at least CH4 and N2, but which is substantially free of H2O and CO2.Type: ApplicationFiled: October 30, 2020Publication date: February 10, 2022Inventors: Luke J. Coleman, Garrett R. Swindlehurst, Katie Held, Kihyung Kim, Werner Leitmayr
-
Publication number: 20220041442Abstract: The present invention provides for a pressure swing adsorption (PSA) process for the substantial removal of H2O and CO2 from a synthesis gas to obtain a multicomponent product gas substantially free of H2O and CO2 with high recovery of the product gas. Further, the present invention provides an integrated process that achieves sufficiently high H2 and CO recoveries such that compression and recycling of the syngas purification PSA tailgas is not necessary to be economically advantageous compared to the conventional processes.Type: ApplicationFiled: October 21, 2020Publication date: February 10, 2022Inventors: Luke J. Coleman, Kihyung Kim, Garrett R. Swindlehurst, Minish M. Shah
-
Publication number: 20210178361Abstract: A carbon adsorbent storage and dispensing system is provided with a structurally modified particulate carbon adsorbent designed with optimal volumetric surface area for a certain range of particle sizes. Bulk density and specific surface area are carefully balanced to ensure the volumetric surface area remains within an optimal range to create high performance, as measured by dispensing capacity of the dopant fluid that is reversibly adsorbed onto the structurally modified particulate carbon adsorbent.Type: ApplicationFiled: December 12, 2019Publication date: June 17, 2021Inventors: Neil A. Stephenson, Douglas C. Heiderman, Ashwini K. Sinha, Rachael A. Masin, Garrett R. Swindlehurst, Cynthia A. Hoover, William S. Kane
-
Patent number: 10989210Abstract: The present invention relates to a method and control system to control the speed of centrifugal compressors operating within a vacuum pressure swing adsorption process to avoid an operation at which surge can occur and directly driven by an electric motor that is in turn controlled by a variable frequency drive, while subsequently operating the vacuum pressure swing process between set limits of highest adsorption and lowest desorption pressure. In accordance with present invention an optimal speed for operation of the compressor is determined at which the compressor will operate along a peak efficiency operating line of a compressor map thereof. This speed is adjusted by a feed back speed multiplier when the flow or other parameter referable to flow through the compressor is below a minimum and a feed forward multiplier during evacuation and evacuation with purge steps that multiplies the feed back multiplier to increase speed of the compressor and thereby avoid surge.Type: GrantFiled: July 10, 2017Date of Patent: April 27, 2021Assignee: PRAXAIR TECHNOLOGY, INC.Inventors: Garrett R. Swindlehurst, Andrew C. Rosinski, Michael S. Manning
-
Publication number: 20200368724Abstract: The present invention relates to a superior carbon adsorbent with or without a core. In one embodiment the carbon adsorbent of the present invention employs carbon adsorbent powder and an organic binding agent which are combined together with an appropriate solvent in an agglomeration step. In another embodiment the invention contemplates a core-in-shell adsorbent comprising an outer shell composed of a carbon and a non-adsorbing inert inner core. Low temperature processing of these agglomerates substantially preserves the binding agent within the final composition and allows one to prepare adsorbent products of high sphericity. The adsorbents of the invention possess superior characteristics such as higher mass transfer rate and CO2 working capacity for use in a H2PSA process.Type: ApplicationFiled: February 14, 2019Publication date: November 26, 2020Inventors: Neil A. Stephenson, Philip A. Barrett, Steven J. Pontonio, Nicholas R. Stuckert, Garrett R. Swindlehurst
-
Patent number: 10295255Abstract: An adsorption process for xenon recovery from a cryogenic liquid or gas stream is described wherein a bed of adsorbent is contacted with the aforementioned xenon containing liquid or gas stream and adsorbs the xenon selectively from this fluid stream. The adsorption bed is operated to at least near full breakthrough with xenon to enable a deep rejection of other stream components, prior to regeneration using the temperature swing method. Operating the adsorption bed to near full breakthrough with xenon, prior to regeneration, enables production of a high purity product from the adsorption bed and further enables oxygen to be used safely as a purge gas, even in cases where hydrocarbons are co-present in the feed stream.Type: GrantFiled: August 23, 2016Date of Patent: May 21, 2019Assignee: PRAXAIR TECHNOLOGY, INC.Inventors: Philip A. Barrett, Neil A. Stephenson, Nicholas R. Stuckert, Michael Freiert, Hai Du, Rachael A. Masin, Garrett R. Swindlehurst
-
Publication number: 20190010949Abstract: The present invention relates to a method and control system to control the speed of centrifugal compressors operating within a vacuum pressure swing adsorption process to avoid an operation at which surge can occur and directly driven by an electric motor that is in turn controlled by a variable frequency drive, while subsequently operating the vacuum pressure swing process between set limits of highest adsorption and lowest desorption pressure. In accordance with present invention an optimal speed for operation of the compressor is determined at which the compressor will operate along a peak efficiency operating line of a compressor map thereof. This speed is adjusted by a feed back speed multiplier when the flow or other parameter referable to flow through the compressor is below a minimum and a feed forward multiplier during evacuation and evacuation with purge steps that multiplies the feed back multiplier to increase speed of the compressor and thereby avoid surge.Type: ApplicationFiled: July 10, 2017Publication date: January 10, 2019Inventors: Garrett R. Swindlehurst, Andrew C. Rosinski, Michael S. Manning
-
Publication number: 20180058758Abstract: An adsorption process for xenon recovery from a cryogenic liquid or gas stream is described wherein a bed of adsorbent is contacted with the aforementioned xenon containing liquid or gas stream and adsorbs the xenon selectively from this fluid stream. The adsorption bed is operated to at least near full breakthrough with xenon to enable a deep rejection of other stream components, prior to regeneration using the temperature swing method. Operating the adsorption bed to near full breakthrough with xenon, prior to regeneration, enables production of a high purity product from the adsorption bed and further enables oxygen to be used safely as a purge gas, even in cases where hydrocarbons are co-present in the feed stream.Type: ApplicationFiled: August 23, 2016Publication date: March 1, 2018Inventors: Philip A. Barrett, Neil A. Stephenson, Nicholas R. Stuckert, Michael Freiert, Hai Du, Rachael A. Masin, Garrett R. Swindlehurst