Patents by Inventor Garry Didinsky

Garry Didinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6298288
    Abstract: A system and method of estimating the attitude of a spacecraft is disclosed. A three-axis inertial-based estimate of spacecraft attitude is produced and is compared to a stellar-based estimate of spacecraft attitude. A Kalman filter having states associated with gyro scale factor and/or misalignment errors compares the stellar-based attitude estimate to the inertial-based estimate of attitude and apportions the total error into three time varying matrices. A first time varying matrix is associated with gyro scale factor and misalignment errors, a second time varying matrix is associated with gyro bias errors, and a third time varying matrix is associated with attitude errors. The time varying matrices are applied as corrective feedbacks to the inertial-based estimate of spacecraft attitude and are adaptively adjusted to minimize the error therein.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: October 2, 2001
    Assignee: Hughes Electronics Corp.
    Inventors: Rongsheng Li, Yeong-Wei A. Wu, Garry Didinsky
  • Patent number: 6289268
    Abstract: A star tracker coupled to the spacecraft having a star catalog associated therewith. A sun sensor is coupled to the spacecraft. A control processor is coupled to the star tracker and the sun sensor. The processor obtains star data using a star tracker and an on-board star catalog. The processor generates a coarse attitude of the spacecraft as a function of the star data, and establishes a track on at least one star in the on-board star catalog. The processor calculates a sun tracking rate, and obtains a normal phase attitude as a function of the star data and the coarse attitude. The information is used to slew the spacecraft to a desired attitude.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: September 11, 2001
    Assignee: Hughes Electronics Corp.
    Inventors: Garry Didinsky, Arunkumar P. Nayak, Rongsheng Li, Yeong-Wei A. Wu, Jeffrey A. Kurland, David D. Needelman
  • Patent number: 6282467
    Abstract: A system and method for determining the attitude in an inertial frame of a spacecraft spinning about an axis in a body frame including determining momentum vector direction in the inertial frame; determining momentum vector direction in the body frame; acquiring information from an at least single-axis sensor; obtaining reference information on the at least single-axis sensor; updating the attitude in the inertial reference frame using the momentum vector direction in the inertial frame, the momentum vector direction in the body frame, the output of the at least single-axis sensor, and the reference information on the at least single-axis sensor; and propagating the attitude using data from one or more inertial sensors.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: August 28, 2001
    Assignee: The Boeing Company
    Inventors: Piyush R. Shah, Garry Didinsky, David S. Uetrecht
  • Patent number: 6272432
    Abstract: A system and method of estimating the attitude of a spacecraft compares a three-axis inertial-based estimate of spacecraft attitude to a stellar-based estimate of the spacecraft attitude. A Kalman filter having some states associated with low spatial frequency errors compares the stellar-based attitude estimate to the inertial-based estimate of attitude and apportions total attitude error into two time varying matrices. A first time varying matrix is associated with star tracker low spatial frequency errors, a second time varying matrix is associated with gyro bias errors and attitude errors. The time varying matrices are used to apply corrective feedbacks to the stellar-based attitude estimate and the inertial-based estimate of spacecraft attitude, and are adaptively adjusted to minimize total estimated attitude error.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: August 7, 2001
    Assignee: Hughes Electronics Corporation
    Inventors: Rongsheng Li, Yeong-Wei A. Wu, Douglas H. Hein, Garry Didinsky
  • Patent number: 6236939
    Abstract: High precision spacecraft attitude determination is produced by specially positioning the spacecraft's star trackers and then filtering out measurement errors produced from star tracker electronics. In addition to the conventional azimuth and elevation controls used for star tracker pointing, the star tracker detector array is rotationally positioned about its boresight so that its pixels are traversed by the imaged star path at an angle within 20° of diagonal. This forces both vertical and horizontal spatial error components in the detector plane to a high frequency range at which they can easily be filtered out in common.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: May 22, 2001
    Assignee: Hughes Electronics Corporation
    Inventors: Yeong-Wei A. Wu, Douglas H. Hein, Garry Didinsky, David L. Augenstein
  • Patent number: 6145790
    Abstract: An attitude sensing system utilizing simplified techniques and apparatus includes a spacecraft control processor which receives signals from an inertial measurement unit and two attitude sensors. The spacecraft control processor calculates a time-varying gain matrix for estimating attitude errors and gyroscope drifts corresponding to the axes of the inertial measurement unit. In special cases where the separation angle between the attitude sensor vectors is less than approximately 10 degrees, the time-varying gain matrix is computed as a fixed gain matrix and a corresponding desensitizing factor.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: November 14, 2000
    Assignee: Hughes Electronics Corporation
    Inventors: Garry Didinsky, Yeong-Wei Andy Wu
  • Patent number: 6108594
    Abstract: A method and apparatus for autonomous acquisition of attitude in a stellar inertial spacecraft attitude system is disclosed. The present invention uses star trackers, an on-board star catalog, spacecraft steering and inertial sensors to determine spacecraft attitude. The present invention utilizes pattern match and pattern rejection methods and uses multiple stellar snap-shots in conjunction with spacecraft steering and spacecraft inertial measurements to acquire spacecraft attitude. Spacecraft inertial measurements are used to connect multiple stellar snap-shots to provide adequate star information that can be used to acquire spacecraft attitude. In an attitude determination system using star trackers, the star trackers may have a narrow field-of-view or few stars may be available for viewing. The present invention uses pattern matching and pattern rejection on different sets of stars, thereby allowing attitude acquisition when the number of stars in view is small.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: August 22, 2000
    Assignee: Hughes Electronics Corporation
    Inventors: Garry Didinsky, Yeong-Wei Wu, Rongsheng Li, Arunkumar Nayak, Douglas Hein
  • Patent number: 6108593
    Abstract: A method and apparatus for estimating attitude sensor bias in a satellite system uses attitude sensors and a spacecraft control processor. Attitude sensors provide output signals, which may contain bias. The present invention interprets the signals, determines the bias present in the signals, and generates an output signal to offset the bias in the signals from the attitude sensors, thereby leading to more accurate positioning of the satellite employing the present invention.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: August 22, 2000
    Assignee: Hughes Electronics Corporation
    Inventors: Garry Didinsky, Yeong-Wei Andy Wu
  • Patent number: 6087646
    Abstract: Methods are provided for sensing radiation direction over a wide field-of-view. In one process step, radiation is received over a first solid angle and, in response, the direction of that radiation is sensed along a first sensor axis. In a similar process step, radiation is received over a second solid angle and, in response, the direction of that radiation is sensed along a second sensor axis. The first and second solid angles are arranged to spatially intersect over a third solid angle that is a subset of the first solid angle and a subset of the second solid angle. These methods facilitate the determination of inertial planes over a wide field-of-view and the third solid angle facilitates the determination of inertial vectors. Radiation sensor structures in accordance with the methods are also provided.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: July 11, 2000
    Assignee: Hughes Electronics Corporation
    Inventor: Garry Didinsky
  • Patent number: 6047226
    Abstract: Spacecraft attitude is efficiently controlled by utilizing spatial noise and temporal noise in the calculation of gains to a Kalman filter. Spatial noise is modeled in a dynamic fashion so as to provide optimal spatial noise attenuation.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: April 4, 2000
    Assignee: Hughes Electronics Corporation
    Inventors: Yeong-Wei Andy Wu, Garry Didinsky, Douglas H. Hein