Patents by Inventor Garth R. Giesbrecht

Garth R. Giesbrecht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10604605
    Abstract: Catalyst systems and methods for making and using the same are described herein. A catalyst system can include at least three catalysts. The three catalysts include a metallocene catalyst, a first non-metallocene including a ligand complexed to a metal through two or more nitrogen atoms, and a second non-metallocene including a ligand complexed to a metal through one or more nitrogen atoms and an oxygen atom.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: March 31, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Juliet Bauer Wagner, Garth R. Giesbrecht, Sun-Chueh Kao, Stephen P. Jaker
  • Patent number: 10604606
    Abstract: Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 31, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, Timothy M. Boller, Garth R. Giesbrecht, C. Jeff Harlan
  • Publication number: 20190169333
    Abstract: Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, Timothy M. Boller, Garth R. Giesbrecht, C. Jeff Harlan
  • Patent number: 10308742
    Abstract: Polymers, and systems and methods for making and using the same are described herein. A polymer includes ethylene and at least one alpha olefin having from 4 to 20 carbon atoms. The polymer is formed by a trimmed catalyst system including a supported catalyst including bis(n-propylcyclopentadienyl) hafnium (R1)(R2) and a trim catalyst comprising meso-O(SiMe2Ind)2Zr(R1)(R2), wherein R1 and R2 are each, independently, methyl, chloro, fluoro, or a hydrocarbyl group.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: June 4, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Francis C. Rix, Timothy M. Boller, Garth R. Giesbrecht, Mark G. Goode, Sun-Chueh Kao, Dongming Li, R. Eric Pequeno, Daniel P. Zilker, Jr.
  • Publication number: 20190106519
    Abstract: Catalyst systems and methods for making and using the same are described herein. A catalyst system can include at least three catalysts. The three catalysts include a metallocene catalyst, a first non-metallocene including a ligand complexed to a metal through two or more nitrogen atoms, and a second non-metallocene including a ligand complexed to a metal through one or more nitrogen atoms and an oxygen atom.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 11, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Juliet Bauer Wagner, Garth R. Giesbrecht, Sun-Chueh Kao, Stephen P. Jaker
  • Patent number: 10239977
    Abstract: Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: March 26, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, Timothy M. Boller, Garth R. Giesbrecht, C. Jeff Harlan
  • Patent number: 10174143
    Abstract: Catalyst systems and methods for making and using the same are described herein. A catalyst system can include at least three catalysts. The three catalysts include a metallocene catalyst, a first non-metallocene including a ligand complexed to a metal through two or more nitrogen atoms, and a second non-metallocene including a ligand complexed to a metal through one or more nitrogen atoms and an oxygen atom.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: January 8, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Juliet Bauer Wagner, Garth R. Giesbrecht, Sun-Chueh Kao, Stephen P. Jaker
  • Publication number: 20180105625
    Abstract: Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 19, 2018
    Applicant: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, Timothy M. Boller, Garth R. Giesbrecht, C. Jeff Harlan
  • Patent number: 9879106
    Abstract: Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: January 30, 2018
    Assignee: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, Timothy M. Boller, Garth R. Giesbrecht, C. Jeff Harlan
  • Patent number: 9850332
    Abstract: Polymers, and systems and methods for making and using the same are described herein. A polymer includes ethylene and at least one alpha olefin having from 4 to 20 carbon atoms. The polymer has a melt index ratio (MIR) greater than about 40. The polymer also has a value for Mw1/Mw2 of at least about 2.0, wherein Mw1/Mw2 is a ratio of a weight average molecular weight (Mw) for a first half of a temperature rising elution (TREF) curve from a cross-fractionation (CFC) analysis to an Mw for a second half of the TREF curve. The polymer also has a value for Tw1?Tw2 of less than about ?15° C., wherein Tw1?Tw2 is a difference of a weight average elution temperature (Tw) for the first half of the TREF curve to a Tw for the second half of the TREF curve.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: December 26, 2017
    Assignee: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Francis C. Rix, Timothy M. Boller, Garth R. Giesbrecht, Mark G. Goode, Sun-Chueh Kao, Dongming Li, R. Eric Pequeno, James M. Farley, Daniel P. Zilker, Jr.
  • Patent number: 9745390
    Abstract: This invention relates to a novel group 2, 3 or 4 transition metal metallocene catalyst compound that is asymmetric having two non-identical indenyl ligands with substitution at R2 having a branched or unbranched C1-C20 alkyl group substituted with a cyclic group or a cyclic group, R8 is an alkyl group and R4 and R10 are substituted phenyl groups.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: August 29, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jian Yang, Matthew W. Holtcamp, Garth R. Giesbrecht, Gregory S. Day
  • Patent number: 9718900
    Abstract: Catalyst systems and methods for making and using the same. A catalyst system can include a non-metallocene catalyst having the structure: wherein M is a group 4 element, each of R13-R20 are independently a hydrogen or a methyl group, wherein at least one of R13-R20 is a methyl group, Ar is an aryl group or a substituted aryl group, Ar? is an aryl group or a substituted aryl group, and each X is, independently, a hydride group, an amide, a benzyl group, a methyl group, a chloro group, a fluoro group, or a hydrocarbyl group.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: August 1, 2017
    Assignee: Univation Technologies, LLC
    Inventor: Garth R. Giesbrecht
  • Patent number: 9714305
    Abstract: Catalyst systems and methods for making and using the same are described herein. A catalyst system can include at least three catalysts. The three catalysts include a metallocene catalyst, a first non-metallocene including a ligand complexed to a metal through two or more nitrogen atoms, and a second non-metallocene including a ligand complexed to a metal through one or more nitrogen atoms and an oxygen atom.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: July 25, 2017
    Assignee: Univation Technologies, LLC
    Inventors: Juliet B. Wagner, Garth R. Giesbrecht, Sun-Chueh Kao, Stephen P. Jaker
  • Publication number: 20170204208
    Abstract: Catalyst systems and methods for making and using the same are described herein. A catalyst system can include at least three catalysts. The three catalysts include a metallocene catalyst, a first non-metallocene including a ligand complexed to a metal through two or more nitrogen atoms, and a second non-metallocene including a ligand complexed to a metal through one or more nitrogen atoms and an oxygen atom.
    Type: Application
    Filed: April 5, 2017
    Publication date: July 20, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Juliet Bauer Wagner, Garth R. Giesbrecht, Sun-Chueh Kao, Stephen P. Jaker
  • Patent number: 9644047
    Abstract: This invention relates to a novel group 2, 3 or 4 transition metal metallocene catalyst compound having two indenyl ligands with identical substitution including, for example, cyclopropyl groups and substituted phenyl groups at the 2 and 4 positions of the catalyst, respectively, where the substituents are at the 3? and 5? positions of the phenyl groups.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: May 9, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jian Yang, Matthew W. Holtcamp, Garth R. Giesbrecht, Gregory S. Day, Jo Ann M. Canich, Lian Xiongdong
  • Patent number: 9556287
    Abstract: Polymers produced by a process comprising contacting one or more olefins with a catalyst system comprising an activator and a Salan catalyst disposed on a support.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: January 31, 2017
    Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.
    Inventors: Garth R. Giesbrecht, Matthew W. Holtcamp, Gregory S. Day, John R. Hagadorn
  • Publication number: 20170008983
    Abstract: Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene.
    Type: Application
    Filed: February 10, 2015
    Publication date: January 12, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, Timothy M. Boller, Garth R. Giesbrecht, C. Jeff Harlan
  • Publication number: 20160347888
    Abstract: Polymers, and systems and methods for making and using the same are described herein. A polymer includes ethylene and at least one alpha olefin having from 4 to 20 carbon atoms. The polymer has a melt index ratio (MIR) greater than about 40. The polymer also has a value for Mw1/Mw2 of at least about 2.0, wherein Mw1/Mw2 is a ratio of a weight average molecular weight (Mw) for a first half of a temperature rising elution (TREF) curve from a cross-fractionation (CFC) analysis to an Mw for a second half of the TREF curve. The polymer also has a value for Tw1?Tw2 of less than about ?15° C., wherein Tw1?Tw2 is a difference of a weight average elution temperature (Tw) for the first half of the TREF curve to a Tw for the second half of the TREF curve.
    Type: Application
    Filed: February 10, 2015
    Publication date: December 1, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Francis C. Rix, Timothy M. Boller, Garth R. Giesbrecht, Mark G. Goode, Sun-Chueh Kao, Dongming Li, R. Eric Pequeno, James M. Farley, Daniel P. Zilker, Jr.
  • Publication number: 20160347886
    Abstract: Polymers, and systems and methods for making and using the same are described herein. A polymer includes ethylene and at least one alpha olefin having from 4 to 20 carbon atoms. The polymer is formed by a trimmed catalyst system including a supported catalyst including bis(n-propylcyclopentadienyl) hafnium (R1)(R2) and a trim catalyst comprising meso-O(SiMe2Ind)2Zr(R1)(R2), wherein R1 and R2 are each, independently, methyl, chloro, fluoro, or a hydrocarbyl group.
    Type: Application
    Filed: February 10, 2015
    Publication date: December 1, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Francis C. Rix, Timothy M. Boller, Garth R. Giesbrecht, Mark G. Goode, Sun-Chueh Kao, Dongming Li, R. Eric Pequeno, Daniel P. Zilker, Jr.
  • Patent number: 9464148
    Abstract: Vinyl terminated polyolefins with long chain branching produced with Salan catalysts having carbazole moieties.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: October 11, 2016
    Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.
    Inventors: Garth R. Giesbrecht, Matthew W. Holtcamp, Moshe Kol