Patents by Inventor Garud Iyengar

Garud Iyengar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7401041
    Abstract: Robust methods for determining an investment portfolio are based on investment parameters which are assumed to be error bounded rather than precisely known values. A confidence threshold is input based on the measure of confidence in the resulting worst-case portfolio performance that is desired by an investor. Using historical return data, a nominal value for the mean return for each asset, a nominal factor loading vector for each asset and a nominal factor covariance matrix are determined. Uncertainty sets, which define the region within which a parameter is statistically expected to reside are defined for the mean return vector, factor loading matrix and factor covariance matrix. The uncertainty sets are then applied to a robust investment problem of interest, based on investment objectives, such that the worst case market parameters reside within the applied uncertainty sets with a probability set by the selected confidence threshold.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: July 15, 2008
    Assignee: The Trustees of Columbia University
    Inventors: Donald Goldfarb, Garud Iyengar
  • Publication number: 20020123953
    Abstract: Robust methods for determining an investment portfolio are based on investment parameters which are assumed to be error bounded rather than precisely known values. A confidence threshold is input based on the measure of confidence in the resulting worst-case portfolio performance that is desired by an investor. Using historical return data, a nominal value for the mean return for each asset, a nominal factor loading vector for each asset and a nominal factor covariance matrix are determined. Uncertainty sets, which define the region within which a parameter is statistically expected to reside are defined for the mean return vector, factor loading matrix and factor covariance matrix. The uncertainty sets are then applied to a robust investment problem of interest, based on investment objectives, such that the worst case market parameters reside within the applied uncertainty sets with a probability set by the selected confidence threshold.
    Type: Application
    Filed: December 17, 2001
    Publication date: September 5, 2002
    Inventors: Donald Goldfarb, Garud Iyengar