Patents by Inventor Gary C. Shubert

Gary C. Shubert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8822874
    Abstract: A method and apparatus for microplasma spray coating a portion of a substrate, such as a gas turbine compressor blade, without masking any portions thereof. The apparatus includes a microplasma gun with an anode, cathode, and an arc generator for generating an electric arc between the anode and cathode. An arc gas emitter injects inert gas through the electric arc. The electric arc is operable for ionizing the gas to create a plasma gas stream. A powder injector injects powdered material into a plasma stream. A localized area of the compressor blade is coated with the powdered material without having to mask the compressor blade.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 2, 2014
    Assignee: United Technologies Corporation
    Inventors: Paul Zajchowski, Donn Blankenship, Gary C. Shubert
  • Patent number: 8563890
    Abstract: A method and apparatus for microplasma spray coating a portion of a turbine vane without masking any portions thereof. The apparatus includes a microplasma gun with an anode, cathode, and an arc generator for generating an electric arc between the anode and cathode. An arc gas emitter injects gas through the electric arc. The electric arc is operable for ionizing the gas to create a plasma gas stream. A powder injector injects powdered material into a plasma stream. A localized area of the turbine vane is coated with the powdered material without having to mask the turbine vane.
    Type: Grant
    Filed: December 8, 2012
    Date of Patent: October 22, 2013
    Assignee: United Technologies Corporation
    Inventors: Paul Zajchowski, Donn R. Blankenship, Gary C. Shubert, Robert L. Memmen
  • Patent number: 8507826
    Abstract: A microplasma spray coating apparatus includes a microplasma apparatus with an anode, cathode, and an arc generator for generating an electric arc between the anode and cathode. An arc gas emitter injects inert gas through the electric arc. The electric arc is operable for ionizing the gas to create a plasma gas stream. A powder injector nozzle extends through the anode and injects powdered material into the plasma stream for transfer to the workpiece.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: August 13, 2013
    Assignee: United Technologies Corporation
    Inventors: Donn R. Blankenship, Paul H. Zajchowski, Gary C. Shubert
  • Patent number: 8367963
    Abstract: A method and apparatus for microplasma spray coating a portion of a turbine vane without masking any portions thereof. The apparatus includes a microplasma gun with an anode, cathode, and an arc generator for generating an electric arc between the anode and cathode. An arc gas emitter injects gas through the electric arc. The electric arc is operable for ionizing the gas to create a plasma gas stream. A powder injector injects powdered material into a plasma stream. A localized area of the turbine vane is coated with the powdered material without having to mask the turbine vane.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: February 5, 2013
    Assignee: United Technologies Corporation
    Inventors: Paul H. Zajchowski, Donn Blankenship, Gary C. Shubert, Robert L. Memmen
  • Patent number: 8367967
    Abstract: A method and apparatus for repairing a thermal barrier coating on components in gas turbine engines and the like. The apparatus includes a microplasma spray gun having an anode, cathode, and an arc generator for generating an electric arc between the anode and cathode. The apparatus includes a nozzle for emitting arc gas into the electric arc. The electric arc is operable for ionizing the gas to create a plasma gas stream. A powder injector injects powdered thermal barrier coating material into the plasma gas stream. Defective areas of the thermal barrier coating can be patched on the component without masking the component.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: February 5, 2013
    Assignee: United Technologies Corporation
    Inventors: Paul H. Zajchowski, Donn Blankenship, Gary C. Shubert
  • Publication number: 20100200549
    Abstract: A microplasma spray coating apparatus includes a microplasma apparatus with an anode, cathode, and an arc generator for generating an electric arc between the anode and cathode. An arc gas emitter injects inert gas through the electric arc. The electric arc is operable for ionizing the gas to create a plasma gas stream. A powder injector nozzle extends through the anode and injects powdered material into the plasma stream for transfer to the workpiece.
    Type: Application
    Filed: April 26, 2010
    Publication date: August 12, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Donn Blankenship, Paul H. Zajchowski, Gary C. Shubert
  • Patent number: 7763823
    Abstract: A method and apparatus for microplasma spray coating a portion of a substrate, such as a gas turbine compressor blade, without masking any portions thereof. The apparatus includes a microplasma gun with an anode, cathode, and an arc generator for generating an electric arc between the anode and cathode. An arc gas emitter injects inert gas through the electric arc. The electric arc is operable for ionizing the gas to create a plasma gas stream. A powder injector injects powdered material into a plasma stream. A localized area of the compressor blade is coated with the powdered material without having to mask the compressor blade.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: July 27, 2010
    Assignee: United Technologies Corporation
    Inventors: Paul H. Zajchowski, Donn Blankenship, Gary C. Shubert
  • Publication number: 20090314202
    Abstract: A method and apparatus for microplasma spray coating a portion of a turbine vane without masking any portions thereof. The apparatus includes a microplasma gun with an anode, cathode, and an arc generator for generating an electric arc between the anode and cathode. An arc gas emitter injects gas through the electric arc. The electric arc is operable for ionizing the gas to create a plasma gas stream. A powder injector injects powdered material into a plasma stream. A localized area of the turbine vane is coated with the powdered material without having to mask the turbine vane.
    Type: Application
    Filed: October 29, 2004
    Publication date: December 24, 2009
    Inventors: Paul H. Zajchowski, Donn Blankenship, Gary C. Shubert, Robert L. Memmen
  • Patent number: 4745256
    Abstract: The welding method may be used to lay down weld beads on metallic substrates with a narrow width of 0.125 inch and less. The process employs a plasma transferred arc and pulses the current delivered to the arc such that a wave form having at least a main amplitude and a lower auxiliary amplitude is provided. The powdered metal which is delivered is laid down in a series of overlapping weld deposits which solidify very rapidly and produce a fine grain structure.
    Type: Grant
    Filed: March 6, 1986
    Date of Patent: May 17, 1988
    Assignee: Metallurgical Industries, Inc.
    Inventor: Gary C. Shubert
  • Patent number: 4689463
    Abstract: The welding method may be used to lay down weld beads on metallic substrates with a narrow width of 0.125 inch and less. The process employs a plasma transferred arc and pulses the current delivered to the arc such that a wave form having at least a main amplitude and a lower auxiliary amplitude is provided. The powdered metal which is delivered is laid down in a series of overlapping weld deposits which solidify very rapidly and produce a fine grain structure.
    Type: Grant
    Filed: December 18, 1985
    Date of Patent: August 25, 1987
    Assignee: Metallurgical Industries, Inc.
    Inventor: Gary C. Shubert