Patents by Inventor Gary Dahl

Gary Dahl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160369243
    Abstract: The present invention provides compositions and methods for reprogramming somatic cells using purified RNA preparations comprising single-strand mRNA encoding an iPS cell induction factor. The purified RNA preparations are preferably substantially free of RNA contaminant molecules that: i) would activate an immune response in the somatic cells, ii) would decrease expression of the single-stranded mRNA in the somatic cells, and/or iii) active RNA sensors in the somatic cells. In certain embodiments, the purified RNA preparations are substantially free of partial mRNAs, double-stranded RNAs, un-capped RNA molecules, and/or single-stranded run-on mRNAs.
    Type: Application
    Filed: May 20, 2016
    Publication date: December 22, 2016
    Inventors: Katalin Kariko, Drew Weissman, Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Publication number: 20160251629
    Abstract: The present invention relates to methods for changing the state of differentiation of a eukaryotic cell, the methods comprising introducing mRNA encoding one or more reprogramming factors into a cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is expressed in sufficient amount and for sufficient time to generate a cell that exhibits a changed state of differentiation compared to the cell into which the mRNA was introduced, and compositions therefor. For example, the present invention provides mRNA molecules and methods for their use to reprogram human somatic cells into pluripotent stem cells.
    Type: Application
    Filed: May 18, 2016
    Publication date: September 1, 2016
    Inventors: Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Patent number: 9371511
    Abstract: The present invention provides compositions and methods for reprogramming somatic cells using purified RNA preparations comprising single-strand mRNA encoding an iPS cell induction factor. The purified RNA preparations are preferably substantially free of RNA contaminant molecules that: i) would activate an immune response in the somatic cells, ii) would decrease expression of the single-stranded mRNA in the somatic cells, and/or iii) active RNA sensors in the somatic cells. In certain embodiments, the purified RNA preparations are substantially free of partial mRNAs, double-stranded RNAs, un-capped RNA molecules, and/or single-stranded run-on mRNAs.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: June 21, 2016
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Katalin Kariko, Drew Weissman, Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Patent number: 9371544
    Abstract: The present invention relates to methods for changing the state of differentiation of a eukaryotic cell, the methods comprising introducing mRNA encoding one or more reprogramming factors into a cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is expressed in sufficient amount and for sufficient time to generate a cell that exhibits a changed state of differentiation compared to the cell into which the mRNA was introduced, and compositions therefor. For example, the present invention provides mRNA molecules and methods for their use to reprogram human somatic cells into pluripotent stem cells.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: June 21, 2016
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Publication number: 20150353925
    Abstract: The present invention provides methods, compositions and kits for using a transposase and a transposon end for generating extensive fragmentation and 5?-tagging of double-stranded target DNA in vitro, then using a DNA polymerase for generating 5?- and 3?-tagged single-stranded DNA fragments without performing a PCR amplification reaction, wherein the first tag on the 5?-ends exhibits the sequence of the transferred transposon end and optionally, an additional arbitrary sequence, and the second tag on the 3?-ends exhibits a different sequence from the sequence exhibited by the first tag. The method is useful for generating 5?- and 3?-tagged DNA fragments for use in a variety of processes, including processes for metagenomic analysis of DNA in environmental samples, copy number variation (CNV) analysis of DNA, and comparative genomic sequencing (CGS), including massively parallel DNA sequencing (so-called “next generation sequencing.
    Type: Application
    Filed: July 21, 2015
    Publication date: December 10, 2015
    Inventors: Haiying Li Grunenwald, Nicholas Caruccio, Jerome Jendrisak, Gary Dahl
  • Publication number: 20150315572
    Abstract: The present invention provides compositions and methods for reprogramming somatic cells using purified RNA preparations comprising single-strand mRNA encoding an iPS cell induction factor. The purified RNA preparations are preferably substantially free of RNA contaminant molecules that: i) would activate an immune response in the somatic cells, ii) would decrease expression of the single-stranded mRNA in the somatic cells, and/or iii) active RNA sensors in the somatic cells. In certain embodiments, the purified RNA preparations are substantially free of partial mRNAs, double-stranded RNAs, un-capped RNA molecules, and/or single-stranded run-on mRNAs.
    Type: Application
    Filed: July 16, 2015
    Publication date: November 5, 2015
    Inventors: Katalin Kariko, Drew Weissman, Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Patent number: 9163213
    Abstract: The present invention provides compositions and methods for reprogramming somatic cells using purified RNA preparations comprising single-strand mRNA encoding an iPS cell induction factor. The purified RNA preparations are preferably substantially free of RNA contaminant molecules that: i) would activate an immune response in the somatic cells, ii) would decrease expression of the single-stranded mRNA in the somatic cells, and/or iii) active RNA sensors in the somatic cells. In certain embodiments, the purified RNA preparations are substantially free of partial mRNAs, double-stranded RNAs, un-capped RNA molecules, and/or single-stranded run-on mRNAs.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: October 20, 2015
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Katalin Kariko, Drew Weissman, Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Patent number: 9115380
    Abstract: The present invention relates to kits and methods for efficiently generating 5? capped RNA having a modified cap nucleotide and for use of such modified-nucleotide-capped RNA molecules. In particular, the present invention provides kits and methods for capping RNA using a modified cap nucleotide and a capping enzyme system, such as poxvirus capping enzyme. The present invention finds use for in vitro production of 5?-capped RNA having a modified cap nucleotide and for in vitro or in vivo production of polypeptides by in vitro or in vivo translation of such modified-nucleotide-capped RNA. The invention also provides methods and kits for capturing or isolating uncapped RNA comprising primary RNA transcripts or RNA having a 5?-diphosphate, and methods and kits for using a capping enzyme system and modified cap nucleotides for labeling uncapped RNA comprising primary RNA transcripts or RNA having a 5?-diphosphate with detectable dye or enzyme moieties.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 25, 2015
    Assignee: CELLSCRIPT, LLC
    Inventors: Jerome Jendrisak, Ronald Meis, Gary Dahl
  • Patent number: 9115396
    Abstract: Compositions of transposome complexes for generating DNA fragments with specific 5?- and 3?-tags. Kits for generating libraries for sequencing, with transposome complexes, enzymes, oligonucleotides or other components.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: August 25, 2015
    Assignee: Epicentre Technologies Corporation
    Inventors: Haiying Li Grunenwald, Nicholas Caruccio, Jerome Jendrisak, Gary Dahl
  • Patent number: 9085801
    Abstract: Compositions of transposome complexes for generating DNA fragments with specific 5?- and 3?-tags. Kits for generating libraries for sequencing, with transposome complexes, enzymes, oligonucleotides or other components.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: July 21, 2015
    Assignee: EPICENTRE TECHNOLOGIES CORPORATION
    Inventors: Haiying Li Grunenwald, Nicholas Caruccio, Jerome Jendrisak, Gary Dahl
  • Patent number: 9080211
    Abstract: The present invention provides methods, compositions and kits for using a transposase and a transposon end for generating extensive fragmentation and 5?-tagging of double-stranded target DNA in vitro, then using a DNA polymerase for generating 5?- and 3?-tagged single-stranded DNA fragments without performing a PCR amplification reaction, wherein the first tag on the 5?-ends exhibits the sequence of the transferred transposon end and optionally, an additional arbitrary sequence, and the second tag on the 3?-ends exhibits a different sequence from the sequence exhibited by the first tag. The method is useful for generating 5?- and 3?-tagged DNA fragments for use in a variety of processes, including processes for metagenomic analysis of DNA in environmental samples, copy number variation (CNV) analysis of DNA, and comparative genomic sequencing (CGS), including massively parallel DNA sequencing (so-called “next-generation sequencing.).
    Type: Grant
    Filed: October 24, 2009
    Date of Patent: July 14, 2015
    Assignee: Epicentre Technologies Corporation
    Inventors: Haiying Li Grunenwald, Nicholas Caruccio, Jerome Jendrisak, Gary Dahl
  • Publication number: 20150191760
    Abstract: The present invention relates to kits and methods for efficiently generating 5? capped RNA having a modified cap nucleotide and for use of such modified-nucleotide-capped RNA molecules. In particular, the present invention provides kits and methods for capping RNA using a modified cap nucleotide and a capping enzyme system, such as poxvirus capping enzyme. The present invention finds use for in vitro production of 5?-capped RNA having a modified cap nucleotide and for in vitro or in vivo production of polypeptides by in vitro or in vivo translation of such modified-nucleotide-capped RNA. The invention also provides methods and kits for capturing or isolating uncapped RNA comprising primary RNA transcripts or RNA having a 5?-diphosphate, and methods and kits for using a capping enzyme system and modified cap nucleotides for labeling uncapped RNA comprising primary RNA transcripts or RNA having a 5?-diphosphate with detectable dye or enzyme moieties.
    Type: Application
    Filed: March 24, 2015
    Publication date: July 9, 2015
    Inventors: Jerome Jendrisak, Ronald Meis, Gary Dahl
  • Publication number: 20150184123
    Abstract: The present invention provides compositions and methods for reprogramming somatic cells using purified RNA preparations comprising single-strand mRNA encoding an iPS cell induction factor. The purified RNA preparations are preferably substantially free of RNA contaminant molecules that: i) would activate an immune response in the somatic cells, ii) would decrease expression of the single-stranded mRNA in the somatic cells, and/or iii) active RNA sensors in the somatic cells. In certain embodiments, the purified RNA preparations are substantially free of partial mRNAs, double-stranded RNAs, un-capped RNA molecules, and/or single-stranded run-on mRNAs.
    Type: Application
    Filed: March 11, 2015
    Publication date: July 2, 2015
    Inventors: Katalin Kariko, Drew Weisman, Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Patent number: 9040256
    Abstract: The present invention provides methods, compositions and kits for using a transposase and a transposon end for generating extensive fragmentation and 5?-tagging of double-stranded target DNA in vitro, then using a DNA polymerase for generating 5?- and 3?-tagged single-stranded DNA fragments without performing a PCR amplification reaction, wherein the first tag on the 5?-ends exhibits the sequence of the transferred transposon end and optionally, an additional arbitrary sequence, and the second tag on the 3?-ends exhibits a different sequence from the sequence exhibited by the first tag. The method is useful for generating 5?- and 3?-tagged DNA fragments for use in a variety of processes, including processes for metagenomic analysis of DNA in environmental samples, copy number variation (CNV) analysis of DNA, and comparative genomic sequencing (CGS), including massively parallel DNA sequencing (so-called “next-generation sequencing.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: May 26, 2015
    Assignee: EPICENTRE TECHNOLOGIES CORPORATION
    Inventors: Haiying Li Grunenwald, Nicholas Caruccio, Jerome Jendrisak, Gary Dahl
  • Patent number: 9012219
    Abstract: The present invention provides compositions and methods for reprogramming somatic cells using purified RNA preparations comprising single-strand mRNA encoding an iPS cell induction factor. The purified RNA preparations are preferably substantially free of RNA contaminant molecules that: i) would activate an immune response in the somatic cells, ii) would decrease expression of the single-stranded mRNA in the somatic cells, and/or iii) active RNA sensors in the somatic cells. In certain embodiments, the purified RNA preparations are substantially free of partial mRNAs, double-stranded RNAs, un-capped RNA molecules, and/or single-stranded run-on mRNAs.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: April 21, 2015
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Katalin Kariko, Drew Weissman, Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Patent number: 9005930
    Abstract: The present invention relates to kits and methods for efficiently generating 5? capped RNA having a modified cap nucleotide and for use of such modified-nucleotide-capped RNA molecules. In particular, the present invention provides kits and methods for capping RNA using a modified cap nucleotide and a capping enzyme system, such as poxvirus capping enzyme. The present invention finds use for in vitro production of 5?-capped RNA having a modified cap nucleotide and for in vitro or in vivo production of polypeptides by in vitro or in vivo translation of such modified-nucleotide-capped RNA. The invention also provides methods and kits for capturing or isolating uncapped RNA comprising primary RNA transcripts or RNA having a 5?-diphosphate, and methods and kits for using a capping enzyme system and modified cap nucleotides for labeling uncapped RNA comprising primary RNA transcripts or RNA having a 5?-diphosphate with detectable dye or enzyme moieties.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: April 14, 2015
    Assignee: Cellscript, LLC
    Inventors: Jerome Jendrisak, Ronald Meis, Gary Dahl
  • Publication number: 20140363876
    Abstract: The present invention relates to kits and methods for efficiently generating 5? capped RNA having a modified cap nucleotide and for use of such modified-nucleotide-capped RNA molecules. In particular, the present invention provides kits and methods for capping RNA using a modified cap nucleotide and a capping enzyme system, such as poxvirus capping enzyme. The present invention finds use for in vitro production of 5?-capped RNA having a modified cap nucleotide and for in vitro or in vivo production of polypeptides by in vitro or in vivo translation of such modified-nucleotide-capped RNA. The invention also provides methods and kits for capturing or isolating uncapped RNA comprising primary RNA transcripts or RNA having a 5?-diphosphate, and methods and kits for using a capping enzyme system and modified cap nucleotides for labeling uncapped RNA comprising primary RNA transcripts or RNA having a 5?-diphosphate with detectable dye or enzyme moieties.
    Type: Application
    Filed: August 28, 2014
    Publication date: December 11, 2014
    Inventors: Jerome Jendrisak, Ronald Meis, Gary Dahl
  • Publication number: 20140328825
    Abstract: The present invention relates to compositions, kits and methods for making and using RNA compositions comprising in vitro-synthesized ssRNA inducing a biological or biochemical effect in a mammalian cell or organism into which the RNA composition is repeatedly or continuously introduced. In certain embodiments, the invention provides compositions and methods for changing the state of differentiation or phenotype of a human or other vertebrate cell. For example, the present invention provides mRNA and methods for reprogramming cells that exhibit a first differentiated state or phenotype to cells that exhibit a second differentiated state or phenotype, such as to reprogram human somatic cells to pluripotent stem cells.
    Type: Application
    Filed: December 31, 2012
    Publication date: November 6, 2014
    Inventors: Judith Meis, Anthony Person, Cynthia Chin, Jerome Jendrisak, Gary Dahl
  • Publication number: 20140315988
    Abstract: The present invention relates to methods for changing the state of differentiation of a eukaryotic cell, the methods comprising introducing mRNA encoding one or more reprogramming factors into a cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is expressed in sufficient amount and for sufficient time to generate a cell that exhibits a changed state of differentiation compared to the cell into which the mRNA was introduced, and compositions therefor. For example, the present invention provides mRNA molecules and methods for their use to reprogram human somatic cells into pluripotent stem cells.
    Type: Application
    Filed: July 2, 2014
    Publication date: October 23, 2014
    Inventors: Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Patent number: 8846348
    Abstract: The present invention relates to kits and methods for efficiently generating 5? capped RNA having a modified cap nucleotide and for use of such modified-nucleotide-capped RNA molecules. In particular, the present invention provides kits and methods for capping RNA using a modified cap nucleotide and a capping enzyme system, such as poxvirus capping enzyme. The present invention finds use for in vitro production of 5?-capped RNA having a modified cap nucleotide and for in vitro or in vivo production of polypeptides by in vitro or in vivo translation of such modified-nucleotide-capped RNA. The invention also provides methods and kits for capturing or isolating uncapped RNA comprising primary RNA transcripts or RNA having a 5?-diphosphate, and methods and kits for using a capping enzyme system and modified cap nucleotides for labeling uncapped RNA comprising primary RNA transcripts or RNA having a 5?-diphosphate with detectable dye or enzyme moieties.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: September 30, 2014
    Assignee: CellScript, LLC
    Inventors: Jerome Jendrisak, Ronald Meis, Gary Dahl