Patents by Inventor Gary David Mohr
Gary David Mohr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8932534Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, said apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of no less than 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar and oxygen partial pressure of 10?10 bar, at a temperature of 1200° C.; wherein said refractory material has no less than 4 vol % formed porosity, measured at 20° C., based upon the bulk volume of said refractory material. In another embodiment, the refractory material has total porosity in the range of from 4 to 60 vol %.Type: GrantFiled: November 20, 2009Date of Patent: January 13, 2015Assignee: ExxonMobil Chemical Patents Inc.Inventors: ChangMin Chun, Frank Hershkowitz, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
-
Patent number: 8821806Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having an oxygen partial pressure of 10?15 bar, a carbon partial pressure above the carbon partial pressure of the zirconium carbide and zirconium oxide phase transition at the same temperature, and at temperatures below the temperature of the zirconium triple point at the oxygen partial pressure of 10?15 bar; and ii) when exposed to a gas having an oxygen partial pressure of 10?15 bar and at temperatures above the zirconium triple point at the oxygen partial pressure of 10?15 bar. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus.Type: GrantFiled: May 3, 2010Date of Patent: September 2, 2014Assignee: ExxonMobil Chemical Patents Inc.Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
-
Patent number: 8741255Abstract: Peroxo-carbonates derived from molten alkali and/or Group II metal salts, particularly carbonate salts are used as catalysts in oxidation and epoxidation reactions. Transition metal compounds may be included to improve the selectivity of the reactions.Type: GrantFiled: July 27, 2007Date of Patent: June 3, 2014Assignee: ExxonMobil Chemical Patents Inc.Inventors: Helge Jaensch, Gary David Mohr
-
Patent number: 8450552Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar, an oxygen partial pressure of 10?10 bar, at a temperature of 1200° C. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus. In other aspects, this invention includes a method for pyrolyzing a hydrocarbon feedstock using a pyrolysis reactor system comprising the step of providing in a heated region of a pyrolysis reactor system for pyrolyzing a hydrocarbon feedstock, apparatus comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C.Type: GrantFiled: October 8, 2009Date of Patent: May 28, 2013Assignee: ExxonMobil Chemical Patents Inc.Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
-
Patent number: 8048294Abstract: A process for reducing the Bromine Index of a hydrocarbon feedstock, the process comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes at least one molecular sieve and at least one clay, and wherein said catalyst is sufficient to reduce more than 50% of the Bromine Index of a hydrocarbon feedstock.Type: GrantFiled: April 23, 2010Date of Patent: November 1, 2011Assignee: ExxonMobil Chemical Patents Inc.Inventors: Stephen Harold Brown, Gary David Mohr, Michael Christopher Clark, Selma Lawrence
-
Publication number: 20110120853Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, said apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of no less than 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar and oxygen partial pressure of 10?10 bar, at a temperature of 1200° C.; wherein said refractory material has no less than 4 vol % formed porosity, measured at 20° C., based upon the bulk volume of said refractory material. In another embodiment, the refractory material has total porosity in the range of from 4 to 60 vol %.Type: ApplicationFiled: November 20, 2009Publication date: May 26, 2011Inventors: ChangMin Chun, Frank Hershkowitz, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
-
Publication number: 20100292523Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having an oxygen partial pressure of 10?15 bar, a carbon partial pressure above the carbon partial pressure of the zirconium carbide and zirconium oxide phase transition at the same temperature, and at temperatures below the temperature of the zirconium triple point at the oxygen partial pressure of 10?15 bar; and ii) when exposed to a gas having an oxygen partial pressure of 10?15 bar and at temperatures above the zirconium triple point at the oxygen partial pressure of 10?15 bar. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus.Type: ApplicationFiled: May 3, 2010Publication date: November 18, 2010Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
-
Publication number: 20100288617Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar, an oxygen partial pressure of 10?10 bar, at a temperature of 1200° C. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus. In other aspects, this invention includes a method for pyrolyzing a hydrocarbon feedstock using a pyrolysis reactor system comprising the step of providing in a heated region of a pyrolysis reactor system for pyrolyzing a hydrocarbon feedstock, apparatus comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C.Type: ApplicationFiled: October 8, 2009Publication date: November 18, 2010Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
-
Publication number: 20100282641Abstract: A process for reducing the Bromine Index of a hydrocarbon feedstock, the process comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes at least one molecular sieve and at least one clay, and wherein said catalyst is sufficient to reduce more than 50% of the Bromine Index of a hydrocarbon feedstock.Type: ApplicationFiled: April 23, 2010Publication date: November 11, 2010Inventors: Stephen Harold Brown, Gary David Mohr, Michael Christopher Clark, Selma Lawrence
-
Patent number: 7799962Abstract: This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.Type: GrantFiled: September 10, 2008Date of Patent: September 21, 2010Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jihad Mohammed Dakka, John Scott Buchanan, Robert Andrew Crane, Christine Nicole Elia, Xiaobing Feng, Larry Lee Iaccino, Gary David Mohr, Brenda Anne Raich, Jose′ Guadalupe Santiesteban, Lei Zhang
-
Patent number: 7731839Abstract: A process for reducing the Bromine Index of a hydrocarbon feedstock, the process comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes at least one molecular sieve and at least one clay, and wherein said catalyst is sufficient to reduce more than 50% of the Bromine Index of a hydrocarbon feedstock.Type: GrantFiled: May 27, 2005Date of Patent: June 8, 2010Assignee: Exxonmobil Chemical Patents Inc.Inventors: Stephen Harold Brown, Gary David Mohr, Michael Christopher Clark, Selma Lawrence
-
Publication number: 20090030214Abstract: Peroxo-carbonates derived from molten alkali and/or Group II metal salts, particularly carbonate salts are used as catalysts in oxidation and epoxidation reactions, transition metal compounds may be included to improve the selectivity of the reactions.Type: ApplicationFiled: July 27, 2007Publication date: January 29, 2009Inventors: Helge Jaensch, Gary David Mohr
-
Publication number: 20090012338Abstract: This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.Type: ApplicationFiled: September 10, 2008Publication date: January 8, 2009Inventors: Jihad Mohammed Dakka, John Scott Buchanan, Robert Andrew Crane, Christine Nicole Elia, Xiaobing Feng, Larry Lee Iaccino, Gary David Mohr, Brenda Anne Raich, Jose' Guadalupe Santiesteban, Lei Zhang
-
Patent number: 7453018Abstract: This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.Type: GrantFiled: November 12, 2004Date of Patent: November 18, 2008Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jihad Mohammed Dakka, John Scott Buchanan, Robert Andrew Crane, Christine Nicole Elia, Xiaobing Feng, Larry Lee Iaccino, Gary David Mohr, Brenda Anne Raich, Jose′ Guadalupe Santiesteban, Lei Zhang
-
Patent number: 7335295Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.Type: GrantFiled: June 7, 2004Date of Patent: February 26, 2008Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jannetje Maatje van den Berge, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
-
Patent number: 7053258Abstract: A process is disclosed for selectively producing one or more aromatic compounds selected from benzene, toluene, para-xylene, meta-xylene, ortho-xylene, ethylbenzene and mixtures thereof from a feed containing C6–C20 hydrocarbons and/or C6–C8 alcohols. The feed is initially subjected to a chemical conversion step to increase the concentration of C6–C8 paraffin and/or olefin precursors of said one or more aromatic compounds and then resulting precursor-enriched feed is then contacted with a dehydrocyclization catalyst under conditions of temperature and hydrogen partial pressure sufficient to effect dehydrocyclization of said paraffin and/or olefin precursors. A product rich in the desired aromatic compound(s) can then be recovered from the dehydrocyclization effluent.Type: GrantFiled: October 30, 2002Date of Patent: May 30, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Xiaobing Feng, Thomas Herman Colle, Gary David Mohr
-
Patent number: 7026264Abstract: There is provided a process for converting hydrocarbons using a catalyst comprising macrostructures having a three-dimensional network of particles comprised of porous inorganic material. The particles of the macrostructures occupy less than 75% of the total volume of the macrostructures and are joined together to form a three-dimensional interconnected network comprised of pores having diameters greater than about 20 ?. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.Type: GrantFiled: April 20, 2004Date of Patent: April 11, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Gary David Mohr, Wilfried Jozef Mortier, Xiaobing Feng, Per Johan Sterte, Lubomira Borislavova Tosheva
-
Patent number: 6924405Abstract: A xylene isomerization process is disclosed in which any ethylbenzene in the feed is removed, either by dealkylation or isomerization, in a separate reactor upstream of the xylene isomerization reactor and the xylene isomerization catalyst is contained in the same reactor, typically a clay treater, as that used to accommodate the olefin removal catalyst. In certain cases, a single catalyst may be used to effect both xylene isomerization and olefin removal.Type: GrantFiled: June 17, 2004Date of Patent: August 2, 2005Assignee: Exxon Mobil Chemical Patents, Inc.Inventor: Gary David Mohr
-
Patent number: 6864203Abstract: A process is provided for the alkylation, transalkylation, or isomerization of aromatic hydrocarbons. The processes comprises contacting aromatic hydrocarbons under conversion conditions with a zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises first crystals of a first large pore zeolite which are bound together by second crystals of a second zeolite.Type: GrantFiled: February 28, 2002Date of Patent: March 8, 2005Assignee: ExxonMobil Chemical Patents Inc.Inventors: Dan Eldon Hendriksen, Gary David Mohr, Johannes Petrus Verduijn, Robert Scott Smith
-
Patent number: 6858129Abstract: There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g.Type: GrantFiled: August 6, 2003Date of Patent: February 22, 2005Assignee: ExxonMobil Chemical Patents Inc.Inventors: Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Xiaobing Feng, Marc H. Anthonis, Bart Schoofs