Patents by Inventor Gary Davis McCormack

Gary Davis McCormack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10925111
    Abstract: A communication device employs a contactless secure communication interface to transmit and receive data with a computing device using close proximity extremely high frequency (EHF) communication. The communication device and the computing device periodically initiate a discovery operation mode, whereby the devices periodically transmit identifying information about the respective devices and listen for identifying information from the other device. Upon completion of the discovery mode operation, the devices enter a link-training operation mode and exchange capability information about the respective devices. During transport mode operation the communication device employs methods to manage access to data stored on the communication device by encrypting the data using one or a combination of training information or capability information as a basis for generating an encryption key.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: February 16, 2021
    Assignee: Keyssa, Inc.
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Publication number: 20200120508
    Abstract: A communication device employs a contactless secure communication interface to transmit and receive data with a computing device using close proximity extremely high frequency (EHF) communication. The communication device and the computing device periodically initiate a discovery operation mode, whereby the devices periodically transmit identifying information about the respective devices and listen for identifying information from the other device. Upon completion of the discovery mode operation, the devices enter a link-training operation mode and exchange capability information about the respective devices. During transport mode operation the communication device employs methods to manage access to data stored on the communication device by encrypting the data using one or a combination of training information or capability information as a basis for generating an encryption key.
    Type: Application
    Filed: December 4, 2019
    Publication date: April 16, 2020
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Patent number: 10031160
    Abstract: A test fixture has a flexible plastic cable that acts as a waveguide. The Device-Under-Test (DUT) is a small transceiver and antenna that operate in the Extremely High-Frequency (EHF) band of 30-300 GHz. The size of the DUT transceiver is very small, limiting the power of emitted electromagnetic radiation so that close-proximity communication is used. The envelope for reception may only extend for about a centimeter from the DUT transceiver, about the same size as the test socket. A slot is formed in the test socket very near to the antenna. The slot receives one end of the plastic waveguide. The slot extends into the envelope by the DUT transceiver so that close-proximity radiation is captured by the plastic waveguide. The waveguide has a high relative permittivity and reflective metalized walls so that the radiation may be carried to a receiver that is outside the envelope.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: July 24, 2018
    Assignee: Keyssa, Inc.
    Inventors: Roger Isaac, Bhupendra Sarhad, Gary Davis McCormack, Ian A. Kyles, Frederick George Weiss, Christopher Scott Sansom
  • Patent number: 9960792
    Abstract: An electromagnetic Extremely High Frequency (EHF) communication chip includes one or more local oscillator circuits, a transducer circuit and at least one of a modulator or a demodulator coupled to the transducer circuit. Each of the local oscillator circuits may have a local oscillator and configured collectively to generate first and second carrier signals having respective first and second EHF frequencies. The first EHF frequency may be different than the second EHF frequency. The transducer circuit may have a first transducer for transmitting and receiving EHF communication signals. The modulator may be coupled to the local oscillator circuits for modulating the first carrier signal or the second carrier signal with a first transmit base data signal. The demodulator may be for demodulating the first carrier signal or the second carrier signal to produce a first receive base data signal.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: May 1, 2018
    Assignee: Keyssa, Inc.
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Patent number: 9894524
    Abstract: A communication device employs a contactless secure communication interface to transmit and receive data with a computing device using close proximity extremely high frequency (EHF) communication. The communication device and the computing device periodically initiate a discovery operation mode, whereby the devices periodically transmit identifying information about the respective devices and listen for identifying information from the other device. Upon completion of the discovery mode operation, the devices enter a link-training operation mode and exchange capability information about the respective devices. During transport mode operation the communication device employs methods to manage access to data stored on the communication device by encrypting the data using one or a combination of training information or capability information as a basis for generating an encryption key.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: February 13, 2018
    Assignee: Keyssa, Inc.
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Publication number: 20180031606
    Abstract: A test fixture has a flexible plastic cable that acts as a waveguide. The Device-Under-Test (DUT) is a small transceiver and antenna that operate in the Extremely High-Frequency (EHF) band of 30-300 GHz. The size of the DUT transceiver is very small, limiting the power of emitted electromagnetic radiation so that close-proximity communication is used. The envelope for reception may only extend for about a centimeter from the DUT transceiver, about the same size as the test socket. A slot is formed in the test socket very near to the antenna. The slot receives one end of the plastic waveguide. The slot extends into the envelope by the DUT transceiver so that close-proximity radiation is captured by the plastic waveguide. The waveguide has a high relative permittivity and reflective metalized walls so that the radiation may be carried to a receiver that is outside the envelope.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 1, 2018
    Inventors: Roger Isaac, Bhupendra Sarhad, Gary Davis McCormack, Ian A. Kyles, Frederick George Weiss, Christopher Scott Sansom
  • Patent number: 9817025
    Abstract: A test fixture has a flexible plastic cable that acts as a waveguide. The Device-Under-Test (DUT) is a small transceiver and antenna that operate in the Extremely High-Frequency (EHF) band of 30-300 GHz. The size of the DUT transceiver is very small, limiting the power of emitted electromagnetic radiation so that close-proximity communication is used. The envelope for reception may only extend for about a centimeter from the DUT transceiver, about the same size as the test socket. A slot is formed in the test socket very near to the antenna. The slot receives one end of the plastic waveguide. The slot extends into the envelope by the DUT transceiver so that close-proximity radiation is captured by the plastic waveguide. The waveguide has a high relative permittivity and reflective metalized walls so that the radiation may be carried to a receiver that is outside the envelope.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: November 14, 2017
    Assignee: Keyssa, Inc.
    Inventors: Roger Isaac, Bhupendra Sarhad, Gary Davis McCormack, Ian A. Kyles, Frederick George Weiss, Christopher Scott Sansom
  • Patent number: 9722667
    Abstract: A system for sensing proximity using EHF signals may include a communication circuit configured to transmit via a transducer an EM signal at an EHF frequency, and a proximity sensing circuit configured to sense a nearby transducer field-modifying object by detecting characteristics of a signal within the communication circuit. A system for determining distance using EHF signals may include a detecting circuit coupled to a transmitting communication circuit and a receiving communication circuit, both communication circuits being mounted on a first surface. The transmitting communication circuit may transmit a signal toward a second surface, and the receiving communication circuit may receive a signal relayed from the second surface. The detecting circuit may determine distance between the first surface and a second surface based on propagation characteristics of the signals.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: August 1, 2017
    Assignee: Keyssa, Inc.
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Publication number: 20170160310
    Abstract: A test fixture has a flexible plastic cable that acts as a waveguide. The Device-Under-Test (DUT) is a small transceiver and antenna that operate in the Extremely High-Frequency (EHF) band of 30-300 GHz. The size of the DUT transceiver is very small, limiting the power of emitted electromagnetic radiation so that close-proximity communication is used. The envelope for reception may only extend for about a centimeter from the DUT transceiver, about the same size as the test socket. A slot is formed in the test socket very near to the antenna. The slot receives one end of the plastic waveguide. The slot extends into the envelope by the DUT transceiver so that close-proximity radiation is captured by the plastic waveguide. The waveguide has a high relative permittivity and reflective metalized walls so that the radiation may be carried to a receiver that is outside the envelope.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 8, 2017
    Inventors: Roger Isaac, Bhupendra Sarhad, Gary Davis McCormack, Ian A. Kyles, Frederick George Weiss, Christopher Scott Sansom
  • Publication number: 20170126259
    Abstract: An electromagnetic Extremely High Frequency (EHF) communication chip includes one or more local oscillator circuits, a transducer circuit and at least one of a modulator or a demodulator coupled to the transducer circuit. Each of the local oscillator circuits may have a local oscillator and configured collectively to generate first and second carrier signals having respective first and second EHF frequencies. The first EHF frequency may be different than the second EHF frequency. The transducer circuit may have a first transducer for transmitting and receiving EHF communication signals. The modulator may be coupled to the local oscillator circuits for modulating the first carrier signal or the second carrier signal with a first transmit base data signal. The demodulator may be for demodulating the first carrier signal or the second carrier signal to produce a first receive base data signal.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 4, 2017
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Patent number: 9588173
    Abstract: A test fixture has a flexible plastic cable that acts as a waveguide. The Device-Under-Test (DUT) is a small transceiver and antenna that operate in the Extremely High-Frequency (EHF) band of 30-300 GHz. The size of the DUT transceiver is very small, limiting the power of emitted electromagnetic radiation so that close-proximity communication is used. The envelope for reception may only extend for about a centimeter from the DUT transceiver, about the same size as the test socket. A slot is formed in the test socket very near to the antenna. The slot receives one end of the plastic waveguide. The slot extends into the envelope by the DUT transceiver so that close-proximity radiation is captured by the plastic waveguide. The waveguide has a high relative permittivity and reflective metalized walls so that the radiation may be carried to a receiver that is outside the envelope.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: March 7, 2017
    Assignee: Keyssa, Inc.
    Inventors: Roger Isaac, Bhupendra Sarhad, Gary Davis McCormack, Ian A. Kyles, Frederick George Weiss, Christopher Scott Sansom
  • Patent number: 9535115
    Abstract: A test fixture has a flexible plastic cable that acts as a waveguide. The Device-Under-Test (DUT) is a small transceiver and antenna that operate in the Extremely High-Frequency (EHF) band of 30-300 GHz. The size of the DUT transceiver is very small, limiting the power of emitted electromagnetic radiation so that close-proximity communication is used. The envelope for reception may only extend for about a centimeter from the DUT transceiver, about the same size as the test socket. A slot is formed in the test socket very near to the antenna. The slot receives one end of the plastic waveguide. The slot extends into the envelope by the DUT transceiver so that close-proximity radiation is captured by the plastic waveguide. The waveguide has a high relative permittivity and reflective metalized walls so that the radiation may be carried to a receiver that is outside the envelope.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: January 3, 2017
    Assignee: Keyssa, Inc.
    Inventors: Roger Isaac, Bhupendra Sarhad, Gary Davis McCormack, Ian A. Kyles, Frederick George Weiss
  • Publication number: 20160380676
    Abstract: A system for sensing proximity using EHF signals may include a communication circuit configured to transmit via a transducer an EM signal at an EHF frequency, and a proximity sensing circuit configured to sense a nearby transducer field-modifying object by detecting characteristics of a signal within the communication circuit. A system for determining distance using EHF signals may include a detecting circuit coupled to a transmitting communication circuit and a receiving communication circuit, both communication circuits being mounted on a first surface. The transmitting communication circuit may transmit a signal toward a second surface, and the receiving communication circuit may receive a signal relayed from the second surface. The detecting circuit may determine distance between the first surface and a second surface based on propagation characteristics of the signals.
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Patent number: 9444523
    Abstract: A system for sensing proximity using EHF signals may include a communication circuit configured to transmit via a transducer an EM signal at an EHF frequency, and a proximity sensing circuit configured to sense a nearby transducer field-modifying object by detecting characteristics of a signal within the communication circuit. A system for determining distance using EHF signals may include a detecting circuit coupled to a transmitting communication circuit and a receiving communication circuit, both communication circuits being mounted on a first surface. The transmitting communication circuit may transmit a signal toward a second surface, and the receiving communication circuit may receive a signal relayed from the second surface. The detecting circuit may determine distance between the first surface and a second surface based on propagation characteristics of the signals.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: September 13, 2016
    Assignee: Keyssa, Inc.
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Patent number: 9426660
    Abstract: A communication device employs a contactless secure communication interface to transmit and receive data with a computing device using close proximity extremely high frequency (EHF) communication. The communication device and the computing device periodically initiate a discovery operation mode, whereby the devices periodically transmit identifying information about the respective devices and listen for identifying information from the other device. Upon completion of the discovery mode operation, the devices enter a link-training operation mode and exchange capability information about the respective devices. During transport mode operation the communication device employs methods to manage access to data stored on the communication device by encrypting the data using one or a combination of training information or capability information as a basis for generating an encryption key.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: August 23, 2016
    Assignee: Keyssa, Inc.
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Patent number: 9325384
    Abstract: Docked devices communicate wirelessly and in close proximity using multiple transmitters of Extremely High-Frequency (EHF) signals of 30-300 GHz. The devices may not be precisely aligned when docked. Tolerance of misalignment is improved by adding barriers such as solid metal blocks or rows of metal-filled vias that have a spacing of less than one-quarter the EHF wavelength. The barriers reflect EHF radiation and prevent EHF radiation from penetrating the barrier. Barriers placed between adjacent transmitters and receivers block stray electromagnetic radiation from causing cross-talk. The barriers can be placed closer to the transmitters than to the receivers to allow for a wider area for reception, permitting a wider misalignment. EHF reflecting features such as ground planes spaced a quarter-wavelength apart may be added to an end of a substrate near a connecting edge to act as a barrier and reflect electromagnetic radiation back toward an intended receiver.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 26, 2016
    Assignee: Keyssa, Inc.
    Inventors: Roger Issac, Gary Davis McCormack, Ian A. Kyles
  • Publication number: 20160066188
    Abstract: A communication device employs a contactless secure communication interface to transmit and receive data with a computing device using close proximity extremely high frequency (EHF) communication. The communication device and the computing device periodically initiate a discovery operation mode, whereby the devices periodically transmit identifying information about the respective devices and listen for identifying information from the other device. Upon completion of the discovery mode operation, the devices enter a link-training operation mode and exchange capability information about the respective devices. During transport mode operation the communication device employs methods to manage access to data stored on the communication device by encrypting the data using one or a combination of training information or capability information as a basis for generating an encryption key.
    Type: Application
    Filed: November 10, 2015
    Publication date: March 3, 2016
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Publication number: 20160064827
    Abstract: A system for transmitting or receiving signals may include an integrated circuit (IC), a transducer operatively coupled to the IC for converting between electrical signals and electromagnetic signals; and insulating material that fixes the locations of the transducer and IC in spaced relationship relative to each other. The system may further include a lead frame providing external connections to conductors on the IC. An electromagnetic-energy directing assembly may be mounted relative to the transducer for directing electromagnetic energy in a region including the transducer and in a direction away from the IC. The directing assembly may include the lead frame, a printed circuit board ground plane, or external conductive elements spaced from the transducer. In a receiver, a signal-detector circuit may be responsive to a monitor signal representative of a received first radio-frequency electrical signal for generating a control signal that enables or disables an output from the receiver.
    Type: Application
    Filed: November 9, 2015
    Publication date: March 3, 2016
    Inventors: Ian A. Kyles, Gary Davis McCormack
  • Publication number: 20160036495
    Abstract: A system for sensing proximity using EHF signals may include a communication circuit configured to transmit via a transducer an EM signal at an EHF frequency, and a proximity sensing circuit configured to sense a nearby transducer field-modifying object by detecting characteristics of a signal within the communication circuit. A system for determining distance using EHF signals may include a detecting circuit coupled to a transmitting communication circuit and a receiving communication circuit, both communication circuits being mounted on a first surface. The transmitting communication circuit may transmit a signal toward a second surface, and the receiving communication circuit may receive a signal relayed from the second surface. The detecting circuit may determine distance between the first surface and a second surface based on propagation characteristics of the signals.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Publication number: 20150168486
    Abstract: A test fixture has a flexible plastic cable that acts as a waveguide. The Device-Under-Test (DUT) is a small transceiver and antenna that operate in the Extremely High-Frequency (EHF) band of 30-300 GHz. The size of the DUT transceiver is very small, limiting the power of emitted electromagnetic radiation so that close-proximity communication is used. The envelope for reception may only extend for about a centimeter from the DUT transceiver, about the same size as the test socket. A slot is formed in the test socket very near to the antenna. The slot receives one end of the plastic waveguide. The slot extends into the envelope by the DUT transceiver so that close-proximity radiation is captured by the plastic waveguide. The waveguide has a high relative permittivity and reflective metalized walls so that the radiation may be carried to a receiver that is outside the envelope.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 18, 2015
    Inventors: Roger Isaac, Bhupendra Sarhad, Gary Davis McCormack, Ian A. Kyles, Frederick George Weiss