Patents by Inventor Gary E. Georgeson

Gary E. Georgeson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10352777
    Abstract: A method for monitoring a temperature of a battery is provided. The method includes applying a thermochromatic coating to a surface of the battery. The method additionally includes directing electromagnetic radiation towards the thermochromatic coating, observing a thermochromatic response of the thermochromatic coating to the electromagnetic radiation, and identifying at least one portion of the battery that has experienced a temperature above a predefined threshold temperature, based on the thermochromatic response.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: July 16, 2019
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Morteza Safai
  • Patent number: 10350839
    Abstract: Systems and processes for enabling an off-site expert to interact with an on-site technician during repair of composite structure. The off-site expert can provide real-time guidance to an on-site technician before and during the performance of repair procedures to avoid errors. The off-site expert is also able to monitor the repair procedures in real time to verify that correct procedures are being employed. In particular, the systems and processes disclosed herein can provide direct visual guidance, feedback, and out-of-plan warnings for manual or automated scarfing and other operations during repair of composite structure. In some embodiments, the repair process combines optical three-dimensional surface measurement, illumination by at least one of visible, ultraviolet and infrared light, and digital light processing projection to provide step-by-step monitoring of the repair.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: July 16, 2019
    Assignee: The Boeing Company
    Inventors: Morteza Safai, Gary E. Georgeson
  • Patent number: 10345272
    Abstract: A method for auto-calibrating a non-destructive testing instrument. In accordance with some embodiments, the method comprises: (a) determining a first set of coordinates in a test object coordinate system of the test object, the first coordinates representing a target position on a surface of the test object; (b) storing a calibration file in a memory of the non-destructive testing instrument, the calibration file containing calibration data which is a function of structural data representing a three-dimensional structure of the test object in an area containing the target position; (c) calibrating the non-destructive testing instrument using the calibration data in the calibration file; and (d) interrogating the target position using the calibrated non-destructive testing instrument.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: Tyler M. Holmes, Jeffrey R. Kollgaard, Gary E. Georgeson
  • Patent number: 10347109
    Abstract: An automated human personnel fall arresting system including a holonomic base platform, a boom arm movably mounted to and depending from the base platform, at least a portion of the arm being movable in three degrees-of-freedom relative to the base platform, a tether supported by the arm, an operator harness coupled to the tether so as to be dependent from the arm, at least one sensor disposed on the arm and configured to sense movement of the portion of the arm in two degrees-of-freedom of the three degrees-of-freedom, and a controller mounted to the base platform and communicably coupled to the at least one sensor, the controller being configured to automatically control position of the base platform in two orthogonal translational directions and one rotation direction controlled independently from translation, relative to the operator harness, based on signals from the at least one sensor.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Gary E. Georgeson, Scott W. Lea, Daniel J. Wright, Karl E. Nelson
  • Publication number: 20190186470
    Abstract: Systems and methods for the automated non-destructive inspection of wind turbine blades. A motor-driven track that conforms to the shape of the blade moves along its length. At each spanwise position, the motor-driven track is stopped and then while the motor-driven track is stationary, any one of various types of NDI sensors is moved along the track to collect inspection data on the structure. The track is either segmented or flexible in order to conform to the cross-sectional profile of the blade. In addition, means for tracking the spanwise motion of the motor-driven track along the blade are provided. Optionally, means for avoiding protrusions on the blade that may be in the way during scanning are provided.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 20, 2019
    Applicant: The Boeing Company
    Inventors: Gary E. Georgeson, Joseph L. Hafenrichter, James J. Troy
  • Publication number: 20190176281
    Abstract: An automated apparatus comprising: a chassis configured to be mounted on an airfoil-shaped body without contacting its trailing edge; a carriage translatably coupled to the chassis; and an end effector pivotably coupled to the carriage. The chassis comprises: a frame; a motorized drive rolling element rotatably coupled to the frame; a rocker mechanism pivotably coupled to the frame; first and second ball and socket bearings mounted to opposing ends of the rocker arm; and a third ball and socket bearing mounted to the frame. During a maintenance procedure, the airfoil-shaped body is oriented at a non-zero angle of attack with the leading edge higher than the trailing edge and with the balls of the ball and socket bearings in contact with the airfoil-shaped body. A gravitational force exerted urges the chassis toward the trailing edge of the airfoil-shaped body for all chordwise positions of the carriage.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 13, 2019
    Applicant: The Boeing Company
    Inventors: Joseph L. Hafenrichter, Gary E. Georgeson
  • Publication number: 20190177007
    Abstract: Disclosed is a method for repairing a damaged portion of a composite fuselage or wing on an aircraft. The method includes performing a non-destructive inspection (“NDI”) of the damage portion to determine a size and a location of the damaged portion, determining a repair for the damaged portion based on the size and location of the damaged portion, and repairing the damaged portion with a composite repair kit.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: Kenneth H. Griess, Gary E. Georgeson
  • Publication number: 20190173574
    Abstract: Systems and methods for high-speed non-destructive inspection of a half- or full-barrel-shaped workpiece, such as a barrel-shaped section of an aircraft fuselage. Such workpieces can be scanned externally using a mobile (e.g., translating) arch gantry system comprising a translatable arch frame disposed outside the fuselage section, a carriage that can travel along a curved track carried by the arch frame, a radially inward-extending telescopic arm having a proximal end fixedly coupled to the carriage, and an NDI sensor unit coupled to a distal end of the telescoping arm. The stiffeners of the fuselage sections can be scanned using a mobile scanner platform disposed inside the fuselage section, which platform comprises a radially outward-extending telescopic arm rotatably coupled to a mobile (e.g., holonomic or linear motion) platform and an NDI sensor unit coupled to a distal end of the telescoping arm.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Applicant: The Boeing Company
    Inventors: Gary E. Georgeson, Barry A. Fetzer, James J. Troy, Scott W. Lea
  • Patent number: 10307977
    Abstract: A method for patching a hole in a composite parent structure. The method comprises: inserting an insert in the hole; placing a composite patch having a multiplicity of curved flexible members on one side of the composite parent structure in a position where a central portion of the composite patch overlies the insert and the flexible members confront opposing portions of the composite parent structure providing adhesive between the composite patch, the insert, and the composite parent structure; pressing the composite patch against the composite parent structure with sufficient pressure to force the flexible members to conform to the shape of the composite parent structure; and while the flexible members are in a stressed state, curing the adhesive in a manner that causes the flexible members to bond to the parent structure.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: June 4, 2019
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Kenneth H. Griess
  • Patent number: 10310054
    Abstract: Systems and methods for performing relative object localization using a local positioning system. The process in accordance with one embodiment solves the problem of determining the location (i.e., the position and orientation) of an object relative to a previous location of the object, or relative to another object, without the need for known 3-D data point positions in the environment. The process in accordance with another embodiment solves the problem of determining the location of the measurement instrument relative to a previous location of the measurement instrument using visible feature points on a target object as a reference, again without the need for known 3-D data point positions. The process in accordance with a further embodiment is capable of determining the locations of multiple objects relative to each other.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: June 4, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson
  • Publication number: 20190154561
    Abstract: A signal is sent into a structure at an angle substantially parallel to a ramp of the structure using a transducer array positioned at a first surface of the structure. An ultrasound response signal is formed at a second surface of the structure. The ultrasound response signal is received at the transducer array.
    Type: Application
    Filed: November 22, 2017
    Publication date: May 23, 2019
    Inventors: Hong Hue Tat, Barry Allen Fetzer, Gary E. Georgeson, William Joseph Tapia, Martin L. Freet, Edward L. Puckett
  • Publication number: 20190154565
    Abstract: Methods are presented. Signals are sent into a first surface of a structure using an ultrasonic transducer. Ultrasound response signals are received at the ultrasonic transducer. A portion of a second surface of the structure is heated while the ultrasonic transducer is sending signals into the first surface, wherein the second surface is on an opposite side of the structure from the first surface. Infrared images of the portion of the second surface of the structure are taken after heating the second surface.
    Type: Application
    Filed: November 22, 2017
    Publication date: May 23, 2019
    Inventors: Hong Hue Tat, William Joseph Tapia, Barry Allen Fetzer, Gary E. Georgeson, Martin L. Freet, Jeffrey G. Thompson
  • Publication number: 20190145909
    Abstract: An automated high-speed method for inspecting metal around fasteners and a computer-controlled apparatus for performing that inspection method. The apparatus comprises a multi-motion inspection head mounted on a scanning bridge, a robotic arm, or a robotic crawler vehicle. The multi-motion inspection head comprises a millimeter waveguide probe and a motorized multi-stage probe placement head that is operable for displacing the waveguide probe along X, Y and Z axes to achieve multiple sequenced motions. The waveguide probe is attached to a mandrel that is rotatably coupled to an X-axis (or Y-axis) stage for rotation about the Z axis. Smart servo or stepper motors with feedback control are used to move the waveguide probe into place and then scan across or around a fastener head to inspect for cracks that may be under paint.
    Type: Application
    Filed: December 29, 2018
    Publication date: May 16, 2019
    Applicant: The Boeing Company
    Inventors: Gary E. Georgeson, Steven K. Brady, Donald D. Palmer, JR.
  • Publication number: 20190137448
    Abstract: Apparatus and methods for real-time fusion of data acquired using ultrasonic and eddy current area sensors during nondestructive examination. The ultrasonic data is acquired using an array of ultrasonic transducer elements configured to enable the production and display of a C-scan of a small area. The ultrasonic transducer array may be one- or two-dimensional. The eddy current sensor can be a single pair of induction coils, a multiplicity of coil pairs, or a coil configuration in which the numbers of drive coils and sense coils are not equal. The eddy current sensor is able to provide data about the test material, such as material thickness or conductivity, to complement the ultrasonic data or enable auto-setup of the ultrasonic inspection device.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 9, 2019
    Applicant: The Boeing Company
    Inventors: Jeffrey R. Kollgaard, Tyler M. Holmes, Gary E. Georgeson
  • Publication number: 20190107382
    Abstract: Systems and methods that provide a framework for location tracking of a movable target component or device (e.g., an automated device or a hand-operated device) to accurately cover an area of interest along a specified path or in a specified region. Grid patterns are projected onto a surface of a workpiece or a part. The projected grid lines may be straight or curved. Straight grid lines can be parallel or intersecting. The grid pattern may include a path to be followed. The lines of the projected grid pattern are detected by a grid detection sensor which is mounted onboard the movable target component or device. Information from the grid detection sensor is fed to a location mapping program. The systems and methods also enable navigation for use in automated and autonomous manufacturing and maintenance operations, as well as other tracking-based applications.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 11, 2019
    Applicant: The Boeing Company
    Inventors: Gary E. Georgeson, James J. Troy, Scott W. Lea
  • Publication number: 20190094149
    Abstract: Systems and methods for measuring the distance to a target object and acquiring scale and point-to-point distance information for that target object in an environment using a remotely operated flying platform, such as an unmanned aerial vehicle (UAV). The system uses on-board sensors and processing techniques to provide discrete or continuous measurements of the distances between points on a target object or the scale of the target object. The addition of on-board three-dimensional measurement capabilities to UAVs (or other flying platforms) allows the collection of distance data. Having this capability enables these systems to acquire distances between points on a single object, such as determining the true scale factors of items in images captured by the UAV, in the course of performing metrology-related tasks.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Applicant: The Boeing Company
    Inventors: James J. Troy, Gary E. Georgeson, Scott W. Lea
  • Publication number: 20190098221
    Abstract: Systems and methods for measuring the distance to a target object and acquiring three-dimensional coordinates, scale information, and point-to-point distance information for that target object in an environment using a remotely operated cable-suspended platform. The system uses on-board sensors and processing techniques to provide discrete or continuous measurements of the distances between points on a target object or the scale of the target object. The addition of on-board three-dimensional measurement capabilities to cable-suspended platforms enables these systems to acquire three-dimensional position data defined in the coordinate system of the environment, determine distances between objects or between points on the same object. The system can also be used to determine the scale factors of items in images captured by a camera carried by the cable-suspended platform, in the course of performing metrology-related tasks.
    Type: Application
    Filed: December 6, 2017
    Publication date: March 28, 2019
    Applicant: The Boeing Company
    Inventors: James J. Troy, Gary E. Georgeson, Scott W. Lea
  • Patent number: 10239641
    Abstract: Systems and methods for high-speed non-destructive inspection of a half- or full-barrel-shaped workpiece, such as a barrel-shaped section of an aircraft fuselage. Such workpieces can be scanned externally using a mobile (e.g., translating) arch gantry system comprising a translatable arch frame disposed outside the fuselage section, a carriage that can travel along a curved track carried by the arch frame, a radially inward-extending telescopic arm having a proximal end fixedly coupled to the carriage, and an NDI sensor unit coupled to a distal end of the telescoping arm. The stiffeners of the fuselage sections can be scanned using a mobile scanner platform disposed inside the fuselage section, which platform comprises a radially outward-extending telescopic arm rotatably coupled to a mobile (e.g., holonomic or linear motion) platform and an NDI sensor unit coupled to a distal end of the telescoping arm.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: March 26, 2019
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Barry A. Fetzer, James J. Troy, Scott W. Lea
  • Publication number: 20190084148
    Abstract: A tracking-enabled extended-reach tool system acting upon a workpiece. The tool system includes a gimbal positioned adjacent an opening in a surface, a sensor system, a computer control, and a display. The extended-reach arm has a first end, a second end, an end effector including a tool adjacent the first end. The extended-reach arm engages the gimbal for relative rotational movement and relative slidable movement through the opening positioning the end effector and the tool on a side of the surface opposite the second end. The sensor system is configured to measure a linear position of the extended-reach arm relative to the gimbal. The computer control receives signals from the sensor system indicative of the linear position of the extended-reach arm relative to the gimbal. The display is connected to the computer control and displays a representation of the workpiece and the tool relative to each other in real time.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 21, 2019
    Inventors: James J. Troy, Gary E. Georgeson, Paul S. Rutherford, Nathan R. Smith
  • Publication number: 20190064058
    Abstract: Described herein is an apparatus, for shielding light generated by a laser during non-destructive inspection of an object. The apparatus includes a light shield at least partially enveloping the laser and defining a first opening through which light generated by the laser passes from the laser to the object. The light shield is opaque and includes at least one first biasing mechanism. The apparatus also includes at least one first light seal coupled to the light shield about the first opening of the light shield. The at least one first biasing mechanism is configured to urge resilient deformation of the at least one first light seal against the object. When the at least one first light seal is resiliently deformed against the object, light generated by the laser is constrained within a light containment space defined between the light shield, the at least one first light seal, and the object.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventors: Gary E. Georgeson, William P. Motzer, Jeffry J. Garvey, Scott W. Lea, James C. Kennedy, Steven K. Brady, Alan F. Stewart, Jill P. Bingham