Patents by Inventor Gary E. Snyder

Gary E. Snyder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7692180
    Abstract: Quantum dots are positioned within a layered composite film to produce a plurality of real-time programmable dopants within the film. Charge carriers are driven into the quantum dots by energy in connected control paths. The charge carriers are trapped in the quantum dots through quantum confinement, such that the charge carriers form artificial atoms, which serve as dopants for the surrounding materials. The atomic number of each artificial atom is adjusted through precise variations in the voltage across the quantum dot that confines it. The change in atomic number alters the doping characteristics of the artificial atoms. The layered composite film is also configured as a shift register.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: April 6, 2010
    Assignee: RavenBrick LLC
    Inventors: Gary E. Snyder, Wil McCarthy
  • Patent number: 7659538
    Abstract: Quantum dots are positioned within a layered composite film to produce one-dimensional and multi-dimensional shift registers within the film. Charge carriers are driven into the quantum dots by energy in connected control paths. The charge carriers are trapped in the quantum dots through quantum confinement, such that the charge carriers form artificial atoms, which serve as dopants for the surrounding materials. The atomic number of each artificial atom is adjusted through precise variations in the voltage across the quantum dot that confines it. The position of the artificial atom in the film is moved by varying the location of confinement and thus operates as a shift register.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: February 9, 2010
    Assignee: RavenBrick, LLC
    Inventors: Gary E. Snyder, Wil McCarthy
  • Patent number: 7655942
    Abstract: A programmable dopant fiber includes a plurality of quantum structures formed on a fiber-shaped substrate, wherein the substrate includes one or more energy-carrying control paths, which pass energy to quantum structures. Quantum structures may include quantum dot particles on the surface of the fiber or electrodes on top of barrier layers and a transport layer, which form quantum dot devices. The energy passing through the control paths drives charge carriers into the quantum dots, leading to the formation of “artificial atoms” with real-time, tunable properties. These artificial atoms then serve as programmable dopants, which alter the behavior of surrounding materials. The fiber can be used as a programmable dopant inside bulk materials, as a building block for new materials with unique properties, or as a substitute for quantum dots or quantum wires in certain applications.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: February 2, 2010
    Assignee: RavenBrick LLC
    Inventors: Wil McCarthy, Gary E Snyder
  • Patent number: 7276432
    Abstract: A programmable dopant fiber includes a plurality of quantum structures formed on a fiber-shaped substrate, wherein the substrate includes one or more energy-carrying control paths, which pass energy to quantum structures. Quantum structures may include quantum dot particles on the surface of the fiber or electrodes on top of barrier layers and a transport layer, which form quantum dot devices. The energy passing through the control paths drives charge carriers into the quantum dots, leading to the formation of “artificial atoms” with real-time, tunable properties. These artificial atoms then serve as programmable dopants, which alter the behavior of surrounding materials. The fiber can be used as a programmable dopant inside bulk materials, as a building block for new materials with unique properties, or as a substitute for quantum dots or quantum wires in certain applications.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: October 2, 2007
    Assignee: The Programmable Matter Corporation
    Inventors: Wil McCarthy, Gary E Snyder
  • Publication number: 20070194297
    Abstract: A multifunctional, programmable quantum confinement switching device uses the quantum confinement of charge carriers to operate on an input signal or energy and to release an output signal or energy. Energy enters the device through an input path and leaves through an output path, after being selectively blocked or modified by the switching action of the device under the influence of a control path. The quantum confinement of charge carriers as an artificial atom within a layer of the device in a quantum well or a quantum dot operates as the switch. The artificial atoms serve as dopants within a material supporting the device and are directly related to the voltage between the control path and a ground plane. The electrical, optical, thermal, or other energy passing through the device is selectively blocked, regulated, filtered, or modified by the doping properties of the artificial atoms. The remaining, unblocked energy is then free to exit the device through the output path.
    Type: Application
    Filed: February 20, 2007
    Publication date: August 23, 2007
    Applicant: THE PROGRAMMABLE MATTER CORPORATION
    Inventors: Wil McCarthy, Richard M. Powers, Gary E. Snyder
  • Patent number: 6978070
    Abstract: A programmable dopant fiber includes a plurality of quantum structures formed on a fiber-shaped substrate, wherein the substrate includes one or more energy-carrying control paths (34), possibly surrounded by an insulator (35), which pass energy to quantum structures. Quantum structures may include quantum dot particles (37) on the surface of the fiber or electrodes (30) on top of barrier layers (31) and transport layer (32) which form quantum dot devices (QD). The energy passing through the control paths (34) drives charge carriers into the quantum dots (QD), leading to the formation of “artificial atoms” with real-time tunable properties. These artificial atoms then serve as programmable dopants, which alter the behavior of surrounding materials. The fiber can be used as a programmable dopant inside bulk materials, as a building block for new materials with unique properties, or as a substitute for quantum dots or quantum wires in certain applications.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: December 20, 2005
    Assignee: The Programmable Matter Corporation
    Inventors: Wil McCarthy, Gary E. Snyder