Patents by Inventor Gary Fedder

Gary Fedder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10350021
    Abstract: Apparatus and method for surgeon-assisted rapid surgical implantation of devices into soft tissue. The apparatus comprises several subsystems that enable the referencing of the spatial position and orientation of the device being implanted with respect to the soft tissue into which it is being implanted and then the controlled implantation of the device at a predefined speed with higher positional accuracy and precision and a reduction in soft tissue damage, provided by ultrasonic assisted motion, compared to current state-of-the-art implantation methods and devices.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: July 16, 2019
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Peter J. Gilgunn, O. Burak Ozdoganlar, Takashi Daniel Yoshida Kozai, Gary Fedder, Xinyan Cui, Douglas J. Weber
  • Publication number: 20170156815
    Abstract: Apparatus and method for surgeon-assisted rapid surgical implantation of devices into soft tissue. The apparatus comprises several subsystems that enable the referencing of the spatial position and orientation of the device being implanted with respect to the soft tissue into which it is being implanted and then the controlled implantation of the device at a predefined speed with higher positional accuracy and precision and a reduction in soft tissue damage, provided by ultrasonic assisted motion, compared to current state-of-the-art implantation methods and devices.
    Type: Application
    Filed: August 8, 2016
    Publication date: June 8, 2017
    Applicants: CARNEGIE MELLON UNIVERSITY, a Pennsylvania Non-Profit Corporation, University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Peter J. Gilgunn, O. Burak Ozdoganlar, Takashi Daniel Yoshida Kozai, Gary Fedder, Xinyan Cui, Douglas J. Weber
  • Patent number: 9408571
    Abstract: Apparatus and method for surgeon-assisted rapid surgical implantation of devices into soft tissue. The apparatus comprises several subsystems that enable the referencing of the spatial position and orientation of the device being implanted with respect to the soft tissue into which it is being implanted and then the controlled implantation of the device at a predefined speed with higher positional accuracy and precision and a reduction in soft tissue damage, provided by ultrasonic assisted motion, compared to current state-of-the-art implantation methods and devices.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: August 9, 2016
    Assignees: Carnegie Mellon University, University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Peter J. Gilgunn, O. Burak Ozdoganlar, Takashi Daniel Yoshida Kozai, Gary Fedder, Xinyan Cui, Douglas J. Weber
  • Publication number: 20140213891
    Abstract: Apparatus and method for surgeon-assisted rapid surgical implantation of devices into soft tissue. The apparatus comprises several subsystems that enable the referencing of the spatial position and orientation of the device being implanted with respect to the soft tissue into which it is being implanted and then the controlled implantation of the device at a predefined speed with higher positional accuracy and precision and a reduction in soft tissue damage, provided by ultrasonic assisted motion, compared to current state-of-the-art implantation methods and devices.
    Type: Application
    Filed: June 18, 2013
    Publication date: July 31, 2014
    Inventors: Peter J. Gilgunn, O. Burak Ozdoganlar, Takashi Daniel Yoshida Kozai, Gary Fedder, Xinyan Tracy Cui, Douglas J. Weber
  • Patent number: 8471304
    Abstract: A method for fabrication of capacitive environment sensors is provided in which the sensor elements are integrated in a CMOS structure with electronics through the use of complementary metal oxide semiconductor (CMOS) fabrication methods. Also provided are environment sensors fabricated, for example, by the method, and a measurement system using the environment sensors fabricated by the method. The described method includes etching away one of the metal layers in a CMOS chip to create a cavity. This cavity is then filled with an environment-sensitive dielectric material to form a sensing capacitor between plates formed by the metal adhesion layers or an array of contacts from other metal layers of the CMOS structure. This approach provides improved sensing capabilities in a system that is easily manufactured.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: June 25, 2013
    Assignee: Carnegie Mellon University
    Inventors: Gary Fedder, Nathan Lazarus
  • Patent number: 8410562
    Abstract: A capacitive chemical sensor, along with methods of making and using the sensor are provided. The sensors described herein eliminate undesirable capacitance by etching away the substrate underneath the capacitive chemical sensor, eliminating most of the substrate capacitance and making changes in the chemical-sensitive layer capacitance easier to detect.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: April 2, 2013
    Assignee: Carnegie Mellon University
    Inventors: Nathan Lazarus, Gary Fedder, Sarah Bedair, Chiung Lo
  • Publication number: 20110316054
    Abstract: A method for fabrication of capacitive environment sensors is provided in which the sensor elements are integrated in a CMOS structure with electronics through the use of complementary metal oxide semiconductor (CMOS) fabrication methods. Also provided are environment sensors fabricated, for example, by the method, and a measurement system using the environment sensors fabricated by the method. The described method includes etching away one of the metal layers in a CMOS chip to create a cavity. This cavity is then filled with an environment-sensitive dielectric material to form a sensing capacitor between plates formed by the metal adhesion layers or an array of contacts from other metal layers of the CMOS structure. This approach provides improved sensing capabilities in a system that is easily manufactured.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 29, 2011
    Applicant: Carnegie Mellon University
    Inventors: Gary Fedder, Nathan Lazarus
  • Publication number: 20110180884
    Abstract: A capacitive chemical sensor, along with methods of making and using the sensor are provided. The sensors described herein eliminate undesirable capacitance by etching away the substrate underneath the capacitive chemical sensor, eliminating most of the substrate capacitance and making changes in the chemical-sensitive layer capacitance easier to detect.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 28, 2011
    Inventors: Nathan Lazarus, Gary Fedder, Sarah Bedair, Chiung Lo
  • Publication number: 20070103029
    Abstract: The present disclosure is broadly directed to a method for designing new MEMS micro-movers, particularly suited for, but not limited to, CMOS fabrication techniques, that are capable of large lateral displacement for tuning capacitors, fabricating capacitors, self-assembly of small gaps in CMOS processes, fabricating latching structures and other applications where lateral micro-positioning on the order of up to 10 ?m, or greater, is desired. Principles of self-assembly and electro-thermal actuation are used for designing micro-movers. In self-assembly, motion is induced in specific beams by designing a lateral effective residual stress gradient within the beams. The lateral residual stress gradient arises from purposefully offsetting certain layers of one material versus another material. For example, lower metal layers may be side by side with dielectric layers, both of which are positioned beneath a top metal layer of a CMOS-MEMS beam.
    Type: Application
    Filed: June 2, 2004
    Publication date: May 10, 2007
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Gary Fedder, Altug Oz
  • Publication number: 20050276726
    Abstract: A microelectro-mechanical chemical sensor includes an active cantilever beam having a chemically selective material layer disposed thereon and at least one, preferably two, resistors with the resistance corresponding to the cantilever beam deflection. The sensor also has at least two, and preferably four, auxiliary cantilever beams adjacent to the active cantilever and attached to the same substrate, each having a piezoresistor disposed thereon. The piezoresistors are elements of a Wheatstone bridge, and the Wheatstone bridge output indicates the amount of a predetermined target chemical sorbed by the chemically selective material layer. The sensor is electrostatically actuated in order to monitor the resonant frequency.
    Type: Application
    Filed: May 25, 2005
    Publication date: December 15, 2005
    Inventors: Robert McGill, Ioana Voiculescu, Gary Fedder