Patents by Inventor Gary J. Cheng
Gary J. Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240326127Abstract: Synthesis of ultrafine nano-alloys and powder precursors for use in the synthesis of ultrafine nano-alloys. A powder precursor is formed of metal salts on particles of a carbonaceous support, and then laser irradiated with a plurality of laser pulses delivered at a high frequency to reduce metal ions of the metal salt in the powder precursor to metal atoms and form the ultrafine nano-alloy.Type: ApplicationFiled: April 1, 2024Publication date: October 3, 2024Inventor: Gary J. Cheng
-
Patent number: 11819946Abstract: Methods and apparatuses for processing materials to enhancing the material's surface strength, improving the material's cyclic and thermal stability of microstructures, and extend the material's fatigue performance. Embodiments include laser shock peening at material temperatures that are moderately elevated (from the material's perspective) above room temperature. Alternate embodiments include laser shock peening at very cold (cryogenic) material temperatures. Still further embodiments include laser shock peening while covering the surface of the material being processed with an active agent that interacts with the laser energy and enhances the pressure exerted on the surface.Type: GrantFiled: February 20, 2023Date of Patent: November 21, 2023Assignee: Purdue Research FoundationInventors: Gary J. Cheng, Yiliang Liao, Yingling Yang, Chang Ye
-
Method of enhancing electrical conduction in gallium-doped zinc oxide films and films made therefrom
Patent number: 11807936Abstract: A method of producing gallium-doped zinc oxide films with enhanced conductivity. The method includes depositing a gallium-doped zinc oxide film on a substrate using a pulsed laser and subjecting the deposited gallium-dope zinc oxide film to a post-treatment effecting recrystallization in the deposited film, wherein the recrystallization enhances the conductivity of the film. Another method of producing gallium-doped zinc oxide films with enhanced conductivity. The method includes the steps of depositing a gallium-doped zinc oxide film on a substrate using a pulsed laser and subjecting the deposited gallium-dope zinc oxide film to an ultraviolet laser beam resulting in recrystallization in the film, wherein the recrystallization enhances the conductivity of the film. A film comprising gallium-doped zinc oxide wherein the film contains a recrystallized grain structure on its surface.Type: GrantFiled: October 28, 2020Date of Patent: November 7, 2023Assignee: Purdue Research FoundationInventors: Gary J. Cheng, Qiong Nian -
Publication number: 20230278140Abstract: Methods and apparatuses for processing materials to enhancing the material’s surface strength, improving the material’s cyclic and thermal stability of microstructures, and extend the material’s fatigue performance. Embodiments include laser shock peening at material temperatures that are moderately elevated (from the material’s perspective) above room temperature. Alternate embodiments include laser shock peening at very cold (cryogenic) material temperatures. Still further embodiments include laser shock peening while covering the surface of the material being processed with an active agent that interacts with the laser energy and enhances the pressure exerted on the surface.Type: ApplicationFiled: February 20, 2023Publication date: September 7, 2023Applicant: Purdue Research FoundationInventors: Gary J. Cheng, Yiliang Liao, Yingling Yang, Chang Ye
-
Patent number: 11590609Abstract: Methods and apparatuses for processing materials to enhancing the material's surface strength, improving the material's cyclic and thermal stability of microstructures, and extend the material's fatigue performance. Embodiments include laser shock peening at material temperatures that are moderately elevated (from the material's perspective) above room temperature. Alternate embodiments include laser shock peening at very cold (cryogenic) material temperatures. Still further embodiments include laser shock peening while covering the surface of the material being processed with an active agent that interacts with the laser energy and enhances the pressure exerted on the surface.Type: GrantFiled: January 18, 2013Date of Patent: February 28, 2023Assignee: Purdue Research FoundationInventors: Gary J. Cheng, Yiliang Liao, Yingling Yang, Chang Ye
-
Method of enhancing electrical conduction in gallium-doped zinc oxide films and films made therefrom
Patent number: 11384425Abstract: A method of producing gallium-doped zinc oxide films with enhanced conductivity. The method includes depositing a gallium-doped zinc oxide film on a substrate using a pulsed laser and subjecting the deposited gallium-dope zinc oxide film to a post-treatment effecting recrystallization in the deposited film, wherein the recrystallization enhances the conductivity of the film. Another method of producing gallium-doped zinc oxide films with enhanced conductivity. The method includes the steps of depositing a gallium-doped zinc oxide film on a substrate using a pulsed laser and subjecting the deposited gallium-dope zinc oxide film to an ultraviolet laser beam resulting in recrystallization in the film, wherein the recrystallization enhances the conductivity of the film. A film comprising gallium-doped zinc oxide wherein the film contains a recrystallized grain structure on its surface.Type: GrantFiled: July 12, 2018Date of Patent: July 12, 2022Assignee: Purdue Research FoundationInventors: Gary J. Cheng, Qiong Nian -
METHOD OF ENHANCING ELECTRICAL CONDUCTION IN GALLIUM-DOPED ZINC OXIDE FILMS AND FILMS MADE THEREFROM
Publication number: 20210062329Abstract: A method of producing gallium-doped zinc oxide films with enhanced conductivity. The method includes depositing a gallium-doped zinc oxide film on a substrate using a pulsed laser and subjecting the deposited gallium-dope zinc oxide film to a post-treatment effecting recrystallization in the deposited film, wherein the recrystallization enhances the conductivity of the film. Another method of producing gallium-doped zinc oxide films with enhanced conductivity. The method includes the steps of depositing a gallium-doped zinc oxide film on a substrate using a pulsed laser and subjecting the deposited gallium-dope zinc oxide film to an ultraviolet laser beam resulting in recrystallization in the film, wherein the recrystallization enhances the conductivity of the film. A film comprising gallium-doped zinc oxide wherein the film contains a recrystallized grain structure on its surface.Type: ApplicationFiled: October 28, 2020Publication date: March 4, 2021Applicant: Purdue Research FoundationInventors: Gary J. Cheng, Qiong Nian -
Patent number: 10632534Abstract: Processes for producing and treating thin-films comprising nanomaterials are provided. A process of producing a transparent conducting film includes printing nanomaterials on a substrate, and directing a laser beam onto the nanomaterials to weld junctions between the nanomaterials. A process for tightly integrating nanomaterials with 2D material includes locating the 2D material over the nanomaterials, and directing a laser beam towards the 2D material to produce laser shock pressure sufficient to wrap the 2D material on the nanomaterials. A process of reducing the resistivity of a transparent conducting film includes directing a first laser beam towards a transparent conducting film having nanomaterials thereon such that the nanomaterials experience laser shock pressure sufficient to compress the nanomaterials, and then directing a second laser beam towards the transparent conducting film such that junctions between the nanomaterials are fused.Type: GrantFiled: February 25, 2016Date of Patent: April 28, 2020Assignee: Purdue Research FoundationInventor: Gary J. Cheng
-
METHOD OF ENHANCING ELECTRICAL CONDUCTION IN GALLIUM-DOPED ZINC OXIDE FILMS AND FILMS MADE THEREFROM
Publication number: 20190017164Abstract: A method of producing gallium-doped zinc oxide films with enhanced conductivity. The method includes depositing a gallium-doped zinc oxide film on a substrate using a pulsed laser and subjecting the deposited gallium-dope zinc oxide film to a post-treatment effecting recrystallization in the deposited film, wherein the recrystallization enhances the conductivity of the film. Another method of producing gallium-doped zinc oxide films with enhanced conductivity. The method includes the steps of depositing a gallium-doped zinc oxide film on a substrate using a pulsed laser and subjecting the deposited gallium-dope zinc oxide film to an ultraviolet laser beam resulting in recrystallization in the film, wherein the recrystallization enhances the conductivity of the film. A film comprising gallium-doped zinc oxide wherein the film contains a recrystallized grain structure on its surface.Type: ApplicationFiled: July 12, 2018Publication date: January 17, 2019Applicant: Purdue Research FoundationInventors: Gary J. Cheng, Qiong Nian -
Patent number: 9881792Abstract: Processes for shaping one- and two-dimensional nanomaterials, and thereby inducing local strains therein preferably to control one or more of their material properties. The processes include providing a substrate comprising a three-dimensional surface feature thereon, locating a nanomaterial on the substrate and over the surface feature, and directing a laser beam toward the nanomaterial such that the nanomaterial experiences laser shock pressure sufficient to deform the nanomaterial to conform at least partially to the shape of the surface feature and adhere to the surface feature either directly or via an intermediate layer therebetween.Type: GrantFiled: March 2, 2017Date of Patent: January 30, 2018Assignee: Purdue Research FoundationInventor: Gary J. Cheng
-
Publication number: 20170326689Abstract: Methods and products formed thereby that include depositing a light-absorbing particle on a substrate and irradiating the particle with a pulsed laser beam to cause an increase in local temperature of a portion of the substrate contacted by and adjacent to the particle, enabling the particle to penetrate and migrate through the substrate to form a pore. The methods may include additional steps of applying a magnetic field gradient to the particle as the particle is irradiated with the laser beam in order to promote the movement of the particle within the substrate or to direct the movement of the particle within the substrate, and/or the step of filling the pore with a material that provides a functional capability independent of the properties of the substrate.Type: ApplicationFiled: May 12, 2017Publication date: November 16, 2017Inventors: Alexander Wei, Naveen Reddy Kadasala, Gary J. Cheng, Mojib Saei
-
Patent number: 9776279Abstract: A method and system are provided for crystallizing thin films with a laser system. The method includes obtaining a thin film comprising a substrate and a target layer that contains nano-scale particles and is deposited on the substrate. The heat conduction between the target layer and the substrate of the thin film is determined based on thermal input from the laser system to identify operating parameters for the laser system that cause crystallization of the nano-scale particles of the target layer in an environment at near room temperature with the substrate remaining at a temperature below the temperature of the target layer. The laser system is then operated with the determined operating parameters to generate a laser beam that is transmitted along an optical path to impinge the target layer. The laser beam is pulsed to create a localized rapid heating and cooling of the target layer.Type: GrantFiled: December 14, 2015Date of Patent: October 3, 2017Assignee: Purdue Research FoundationInventors: Gary J. Cheng, Martin Y. Zhang
-
Publication number: 20170256406Abstract: Processes for shaping one- and two-dimensional nanomaterials, and thereby inducing local strains therein preferably to control one or more of their material properties. The processes include providing a substrate comprising a three-dimensional surface feature thereon, locating a nanomaterial on the substrate and over the surface feature, and directing a laser beam toward the nanomaterial such that the nanomaterial experiences laser shock pressure sufficient to deform the nanomaterial to conform at least partially to the shape of the surface feature and adhere to the surface feature either directly or via an intermediate layer therebetween.Type: ApplicationFiled: March 2, 2017Publication date: September 7, 2017Inventor: Gary J. Cheng
-
Publication number: 20170243672Abstract: A composite transparent conducting film (TCF) on a substrate that includes a first region extending to a first depth of the TCF and having a higher density (lower porosity) than a second region of the TCF located at a different depth of the TCF. A method of forming the composite TCF includes applying a transparent conducting layer onto a substrate or onto a second layer previously formed on the substrate, and rapidly heating the transparent conducting layer resulting in a first region extending to a first depth of the transparent conducting layer that is at least partially melted and of a higher density (lower porosity) than a second region located at a different depth of the transparent conducting layer that is not melted, thereby forming a composite TCF that has a change of porosity in a thickness direction of the composite TCF.Type: ApplicationFiled: February 26, 2016Publication date: August 24, 2017Inventors: Gary J. Cheng, Qiong Nian, Michael Callahan, John S. Bailey
-
Publication number: 20160250712Abstract: Processes for producing and treating thin-films comprising nanomaterials are provided. A process of producing a transparent conducting film includes printing nanomaterials on a substrate, and directing a laser beam onto the nanomaterials to weld junctions between the nanomaterials. A process for tightly integrating nanomaterials with 2D material includes locating the 2D material over the nanomaterials, and directing a laser beam towards the 2D material to produce laser shock pressure sufficient to wrap the 2D material on the nanomaterials. A process of reducing the resistivity of a transparent conducting film includes directing a first laser beam towards a transparent conducting film having nanomaterials thereon such that the nanomaterials experience laser shock pressure sufficient to compress the nanomaterials, and then directing a second laser beam towards the transparent conducting film such that junctions between the nanomaterials are fused.Type: ApplicationFiled: February 25, 2016Publication date: September 1, 2016Inventor: Gary J. Cheng
-
Publication number: 20160144453Abstract: A method and system are provided for crystallizing thin films with a laser system. The method includes obtaining a thin film comprising a substrate and a target layer that contains nano-scale particles and is deposited on the substrate. The heat conduction between the target layer and the substrate of the thin film is determined based on thermal input from the laser system to identify operating parameters for the laser system that cause crystallization of the nano-scale particles of the target layer in an environment at near room temperature with the substrate remaining at a temperature below the temperature of the target layer. The laser system is then operated with the determined operating parameters to generate a laser beam that is transmitted along an optical path to impinge the target layer. The laser beam is pulsed to create a localized rapid heating and cooling of the target layer.Type: ApplicationFiled: December 14, 2015Publication date: May 26, 2016Inventors: Gary J. Cheng, Martin Y. Zhang
-
Patent number: 9211611Abstract: A method and system are provided for crystallizing thin films with a laser system. The method includes obtaining a thin film comprising a substrate and a target layer that contains nano-scale particles and is deposited on the substrate. The heat conduction between the target layer and the substrate of the thin film is determined based on thermal input from the laser system to identify operating parameters for the laser system that cause crystallization of the nano-scale particles of the target layer in an environment at near room temperature with the substrate remaining at a temperature below the temperature of the target layer. The laser system is then operated with the determined operating parameters to generate a laser beam that is transmitted along an optical path to impinge the target layer. The laser beam is pulsed to create a localized rapid heating and cooling of the target layer.Type: GrantFiled: November 21, 2012Date of Patent: December 15, 2015Assignee: Purdue Research FoundationInventors: Gary J. Cheng, Martin Y. Zhang
-
Patent number: 8939107Abstract: A confined pulsed laser deposition method and apparatus that includes an ablative coating between a transparent confinement layer and a backing plane, and a laser beam directed through the confinement layer to ablate the coating at generally ambient temperature and pressure, and using laser induced pressure to synthesize metaphase from the ablative coating. For example, diamond phase carbon can be synthesized from a graphite coating. The laser beam can be directed through a focus lens to control the final spot size, or through a beam diffuser to make the intensity more uniform. An XYZ-stage can position a desired target area of the ablative coating to be irradiated by the laser beam. The laser beam can have an intensity of less than about 6 GW/cm2, or less than about 4 GW/cm2. The laser beam can have an excitation wavelength of about 568 nm.Type: GrantFiled: February 28, 2011Date of Patent: January 27, 2015Assignee: Purdue Research FoundationInventors: Yingling Yang, Gary J. Cheng, Ji Li, Yi Zhang
-
Patent number: 8499599Abstract: A laser nanoforming system and method for forming three-dimensional nanostructures from a metallic surface. A laser beam is directed to hit and explode an ablative layer to generate a shockwave that exerts a force on the metallic surface to form an inverse nanostructure of an underlying mold. A dry lubricant can be located between the metallic surface and mold to reduce friction. A confinement layer substantially transparent to the laser beam can confine the shockwave. A cushion layer can protect the mold from damage. A flyer layer between the ablative layer and metallic surface can protect the metallic surface from thermal effects of the exploding ablative layer. The mold can have feature sizes less than 500 nm. The metallic surface can be aluminum film. The dry lubricant can be sputtered Au—Cr film, evaporated Au film or a dip-coated PVP film or other dry lubricant materials.Type: GrantFiled: May 23, 2011Date of Patent: August 6, 2013Assignee: Purdue Research FoundationInventors: Gary J. Cheng, Huang Gao, Yingling Yang
-
Patent number: 8349713Abstract: A system and method for enhancing the conversion efficiency of thin film photovoltaics. The thin film structure includes a photovoltaic absorbent layer covered by a confinement layer. A laser beam passes through the confinement layer and hits the photovoltaic absorbent layer. The laser can be pulsed to create localized rapid heating and cooling of the photovoltaic absorbent layer. The confinement layer confines the laser induced plasma plume creating a localized high-pressure condition for the photovoltaic absorbent layer. The laser beam can be scanned across specific regions of the thin film structure. The laser beam can be pulsed as a series of short pulses. The photovoltaic absorbent layer can be made of various materials including copper indium diselenide, gallium arsenide, and cadmium telluride. The photovoltaic absorbent layer can be sandwiched between a substrate and the confinement layer, and a molybdenum layer can be between the substrate and the photovoltaic absorbent layer.Type: GrantFiled: May 23, 2011Date of Patent: January 8, 2013Assignee: Purdue Research FoundationInventors: Gary J. Cheng, Martin Yi Zhang, Yingling Yang