Patents by Inventor Gary LaFontant

Gary LaFontant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9040418
    Abstract: Method of forming a capture pad on a semiconductor substrate. The method includes providing a semiconductor substrate having an active side and an inactive side and having a plurality of unfilled TSVs extending between the active side and the inactive side; filling the TSVs with a metal; defining capture pad areas on at least one of the active side and the inactive side adjacent to the TSVs, the defined capture pad areas comprising insulator islands and open areas; filling the open areas with the same metal to form a capture pad in direct contact with each of the TSVs, each of the capture pads having an all metal portion that follows an outline of each of the TSVs.
    Type: Grant
    Filed: November 10, 2013
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, John A. Griesemer, Gary Lafontant, Kevin S. Petrarca, Richard P. Volant
  • Patent number: 8772949
    Abstract: Method of forming a capture pad on a semiconductor substrate. The method includes providing a semiconductor substrate having an active side and an inactive side and having a plurality of unfilled TSVs extending between the active side and the inactive side; filling the TSVs with a metal such that the metal is recessed with respect to at least one of the active side and the inactive side and does not entirely fill the TSVs; defining capture pad areas on the at least one of the active side and inactive side adjacent to the recessed TSVs; filling the capture pad areas and recessed TSVs with the same metal to form a capture pad in direct contact with each of the TSVs, each of the capture pads having an all metal portion that follows an outline of each of the TSVs. Also disclosed is a semiconductor substrate having a capture pad.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, John A. Griesemer, Gary Lafontant, Kevin S. Petrarca, Richard P. Volant
  • Publication number: 20140124946
    Abstract: Method of forming a capture pad on a semiconductor substrate. The method includes providing a semiconductor substrate having an active side and an inactive side and having a plurality of unfilled TSVs extending between the active side and the inactive side; filling the TSVs with a metal such that the metal is recessed with respect to at least one of the active side and the inactive side and does not entirely fill the TSVs; defining capture pad areas on the at least one of the active side and inactive side adjacent to the recessed TSVs; filling the capture pad areas and recessed TSVs with the same metal to form a capture pad in direct contact with each of the TSVs, each of the capture pads having an all metal portion that follows an outline of each of the TSVs. Also disclosed is a semiconductor substrate having a capture pad.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. Farooq, John A. Griesemer, Gary Lafontant, Kevin S. Petrarca, Richard P. Volant
  • Publication number: 20140127904
    Abstract: Method of forming a capture pad on a semiconductor substrate. The method includes providing a semiconductor substrate having an active side and an inactive side and having a plurality of unfilled TSVs extending between the active side and the inactive side; filling the TSVs with a metal; defining capture pad areas on at least one of the active side and the inactive side adjacent to the TSVs, the defined capture pad areas comprising insulator islands and open areas; filling the open areas with the same metal to form a capture pad in direct contact with each of the TSVs, each of the capture pads having an all metal portion that follows an outline of each of the TSVs.
    Type: Application
    Filed: November 10, 2013
    Publication date: May 8, 2014
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. Farooq, John A. Griesemer, Gary Lafontant, Kevin S. Petrarca, Richard P. Volant
  • Patent number: 8674506
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Timothy H. Daubenspeck, Gary LaFontant, Ian D. Melville, Ekta Misra, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Robin A. Susko, Thomas A. Wassick, Xiaojin Wei, Steven L. Wright
  • Publication number: 20130234329
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Application
    Filed: April 30, 2013
    Publication date: September 12, 2013
    Applicant: Intetnational Business Machines Corporation
    Inventors: Raschid J. BEZAMA, Timothy H. DAUBENSPECK, Gary LaFONTANT, Ian D. MELVILLE, Ekta MISRA, George J. SCOTT, Krystyna W. SEMKOW, Timothy D. SULLIVAN, Robin A. SUSKO, Thomas A. WASSICK, Xiaojin WEI, Steven L. WRIGHT
  • Patent number: 8487447
    Abstract: A semiconductor structure which includes a plurality of stacked semiconductor chips in a three dimensional configuration. There is a first semiconductor chip in contact with a second semiconductor chip. The first semiconductor chip includes a through silicon via (TSV) extending through the first semiconductor chip; an electrically conducting pad at a surface of the first semiconductor chip, the TSV terminating in contact at a first side of the electrically conducting pad; a passivation layer covering the electrically conducting pad, the passivation layer having a plurality of openings; and a plurality of electrically conducting structures formed in the plurality of openings and in contact with a second side of the electrically conducting pad, the contact of the plurality of electrically conducting structures with the electrically conducting pad being offset with respect to the contact of the TSV with the electrically conducting pad.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Mario J. Interrante, Gary LaFontant, Michael J. Shapiro, Thomas A. Wassick, Bucknell C. Webb
  • Patent number: 8446006
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Timothy H. Daubenspeck, Gary LaFontant, Ian D. Melville, Ekta Misra, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Robin A. Susko, Thomas A. Wassick, Xiaojin Wei, Steven L. Wright
  • Publication number: 20120292779
    Abstract: A semiconductor structure which includes a plurality of stacked semiconductor chips in a three dimensional configuration. There is a first semiconductor chip in contact with a second semiconductor chip. The first semiconductor chip includes a through silicon via (TSV) extending through the first semiconductor chip; an electrically conducting pad at a surface of the first semiconductor chip, the TSV terminating in contact at a first side of the electrically conducting pad; a passivation layer covering the electrically conducting pad, the passivation layer having a plurality of openings; and a plurality of electrically conducting structures formed in the plurality of openings and in contact with a second side of the electrically conducting pad, the contact of the plurality of electrically conducting structures with the electrically conducting pad being offset with respect to the contact of the TSV with the electrically conducting pad.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: International Business Machines Corporation
    Inventors: MARIO J. INTERRANTE, Gary LaFontant, Michael J. Shapiro, Thomas A. Wassick, Bucknell C. Webb
  • Patent number: 8298929
    Abstract: Semiconductor structures, methods of manufacture and design structures are provided. The structure includes at least one offset crescent shaped solder via formed in contact with an underlying metal pad of a chip. The at least one offset crescent shaped via is offset with respect to at least one of the underlying metal pad and an underlying metal layer in direct electrical contact with an interconnect of the chip which is in electrical contact with the underlying metal layer.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Gary Lafontant, Ekta Misra, David L. Questad, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Thomas A. Wassick, Steven L. Wright
  • Patent number: 8288270
    Abstract: The embodiments provide a method for reducing electromigration in a circuit containing a through-silicon via (TSV) and the resulting novel structure for the TSV. A TSV is formed through a semiconductor substrate. A first end of the TSV connects to a first metallization layer on a device side of the semiconductor substrate. A second end of the TSV connects to a second metallization layer on a grind side of the semiconductor substrate. A first flat edge is created on the first end of the TSV at the intersection of the first end of the TSV and the first metallization layer. A second flat edge is created on the second end of the TSV at the intersection of the second end of the TSV and the second metallization layer. On top of the first end a metal contact grid is placed, having less than eighty percent metal coverage.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Mukta G Farooq, John A Griesemer, Gary LaFontant, William Francis Landers, Timothy Dooling Sullivan
  • Publication number: 20120199983
    Abstract: The embodiments provide a method for reducing electromigration in a circuit containing a through-silicon via (TSV) and the resulting novel structure for the TSV. A TSV is formed through a semiconductor substrate. A first end of the TSV connects to a first metallization layer on a device side of the semiconductor substrate. A second end of the TSV connects to a second metallization layer on a grind side of the semiconductor substrate. A first flat edge is created on the first end of the TSV at the intersection of the first end of the TSV and the first metallization layer. A second flat edge is created on the second end of the TSV at the intersection of the second end of the TSV and the second metallization layer. On top of the first end a metal contact grid is placed, having less than eighty percent metal coverage.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 9, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, John A. Griesemer, Gary LaFontant, William Francis Landers, Timothy Dooling Sullivan
  • Publication number: 20120199975
    Abstract: The embodiments provide a method for reducing electromigration in a circuit containing a through-silicon via (TSV) and the resulting novel structure for the TSV. A TSV is formed through a semiconductor substrate. A first end of the TSV connects to a first metallization layer on a device side of the semiconductor substrate. A second end of the TSV connects to a second metallization layer on a grind side of the semiconductor substrate. A first flat edge is created on the first end of the TSV at the intersection of the first end of the TSV and the first metallization layer. A second flat edge is created on the second end of the TSV at the intersection of the second end of the TSV and the second metallization layer. On top of the first end a metal contact grid is placed, having less than eighty percent metal coverage.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 9, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, John A. Griesemer, Gary LaFontant, William Francis Landers, Timothy Dooling Sullivan
  • Patent number: 8237288
    Abstract: The embodiments provide a method for reducing electromigration in a circuit containing a through-silicon via (TSV) and the resulting novel structure for the TSV. A TSV is formed through a semiconductor substrate. A first end of the TSV connects to a first metallization layer on a device side of the semiconductor substrate. A second end of the TSV connects to a second metallization layer on a grind side of the semiconductor substrate. A first flat edge is created on the first end of the TSV at the intersection of the first end of the TSV and the first metallization layer. A second flat edge is created on the second end of the TSV at the intersection of the second end of the TSV and the second metallization layer. On top of the first end a metal contact grid is placed, having less than eighty percent metal coverage.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Mukta G Farooq, John A Griesemer, Gary LaFontant, William Francis Landers, Timothy Dooling Sullivan
  • Publication number: 20120139123
    Abstract: Semiconductor structures, methods of manufacture and design structures are provided. The structure includes at least one offset crescent shaped solder via formed in contact with an underlying metal pad of a chip. The at least one offset crescent shaped via is offset with respect to at least one of the underlying metal pad and an underlying metal layer in direct electrical contact with an interconnect of the chip which is in electrical contact with the underlying metal layer.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 7, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy H. Daubenspeck, Gary Lafontant, Ekta Misra, David L. Questad, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Thomas A. Wassick, Steven L. Wright
  • Publication number: 20110206379
    Abstract: An apparatus and method for receiving electrical signals and transmitting optical signals includes a substrate having an electrical circuit. An electrical-to-optical module is mounted on the substrate, and the module includes an array of photodetectors communicating with the electrical circuit. The photodetectors may include VCSEL arrays or PD arrays. The module receives electrical signals from the electrical circuit and provides a plurality of corresponding light signals. An electrical transport is embedded in the substrate, and the electrical transport electrically communicates with the array of photodetectors. An optical interface provides electrical communication between an optical fiber and the electrical circuit. A heat transfer device may be positioned adjacent the photodetectors to transfer heat generated by the photodetectors.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Russell A. Budd, Warren D. Dyckman, Gary Lafontant, Frank R. Libsch
  • Publication number: 20110147922
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Raschid J. BEZAMA, Timothy H. DAUBENSPECK, Gary LaFONTANT, Ian D. MELVILLE, Ekta MISRA, George J. SCOTT, Krystyna W. SEMKOW, Timothy D. SULLIVAN, Robin A. SUSKO, Thomas A. WASSICK, Xiaojin WEI, Steven L. WRIGHT
  • Patent number: 7271681
    Abstract: The present invention provides a technique for adjusting the size of clearance holes for impedance control in multilayer electronic packaging and printed circuit boards. The method comprises: providing parameters for a structure having a clearance hole and at least one via passing through the clearance hole; calculating a characteristic impedance for the at least one via; and adjusting at least a size of the clearance hole until the characteristic impedance for the at least one via is approximately equal to a desired characteristic impedance.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Warren D. Dyckman, Gary LaFontant, Edward R. Pillai
  • Publication number: 20070008049
    Abstract: The present invention provides a technique for adjusting the size of clearance holes for impedance control in multilayer electronic packaging and printed circuit boards. The method comprises: providing parameters for a structure having a clearance hole and at least one via passing through the clearance hole; calculating a characteristic impedance for the at least one via; and adjusting at least a size of the clearance hole until the characteristic impedance for the at least one via is approximately equal to a desired characteristic impedance.
    Type: Application
    Filed: July 8, 2005
    Publication date: January 11, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Warren Dyckman, Gary LaFontant, Edward Pillai