Patents by Inventor Gary M. Atkinson

Gary M. Atkinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9694098
    Abstract: A remotely deployable vapor delivery device is described that is conveniently and effectively deployed in a hard-to-reach location. The device is approximately spherical in shape, and includes an integrated reservoir containing the desired vapor producing substance, an evaporative surface and means for continuous flow of the vapor producing substance from the integrated reservoir to the evaporative surface which provides an approximately constant vapor delivery rate. The advantages of the embodiments include a device that can be conveniently tossed or rolled, is compact in size, provides a maximal amount of stored vapor producing substance, has an efficient usage rate of the stored vapor producing substance and provides a long operating lifetime. Other advantages of the embodiments described include hands-free activation, self-righting after deployment, tamper resistance, non-energized operation, a modest number of low cost parts that are readily manufactured and assembled, and easy retrieval.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: July 4, 2017
    Assignee: SimpleTek LLC
    Inventors: Gary M. Atkinson, Glenn Willoughby
  • Publication number: 20160114070
    Abstract: A remotely deployable vapor delivery device is described that is conveniently and effectively deployed in a hard-to-reach location. The device is approximately spherical in shape, and includes an integrated reservoir containing the desired vapor producing substance, an evaporative surface and means for continuous flow of the vapor producing substance from the integrated reservoir to the evaporative surface which provides an approximately constant vapor delivery rate. The advantages of the embodiments include a device that can be conveniently tossed or rolled, is compact in size, provides a maximal amount of stored vapor producing substance, has an efficient usage rate of the stored vapor producing substance and provides a long operating lifetime. Other advantages of the embodiments described include hands-free activation, self-righting after deployment, tamper resistance, non-energized operation, a modest number of low cost parts that are readily manufactured and assembled, and easy retrieval.
    Type: Application
    Filed: January 6, 2016
    Publication date: April 28, 2016
    Applicant: SimpleTek LLC
    Inventors: Gary M. Atkinson, Glenn Willoughby
  • Patent number: 9259499
    Abstract: A remotely deployable vapor delivery device is described that is conveniently and effectively deployed in a hard-to-reach location. The device is approximately spherical in shape, and includes an integrated reservoir containing the desired vapor producing substance, an evaporative surface and means for continuous flow of the vapor producing substance from the integrated reservoir to the evaporative surface which provides an approximately constant vapor delivery rate. The advantages of the embodiments include a device that can be conveniently tossed or rolled, is compact in size, provides a maximal amount of stored vapor producing substance, has an efficient usage rate of the stored vapor producing substance and provides a long operating lifetime. Other advantages of the embodiments described include hands-free activation, self-righting after deployment, tamper resistance, non-energized operation, a modest number of low cost parts that are readily manufactured and assembled, and easy retrieval.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: February 16, 2016
    Assignee: SimpleTek LLC
    Inventors: Gary M. Atkinson, Glenn Willoughby
  • Publication number: 20120061486
    Abstract: A remotely deployable vapor delivery device is described that is conveniently and effectively deployed in a hard-to-reach location. The device is approximately spherical in shape, and includes an integrated reservoir containing the desired vapor producing substance, an evaporative surface and means for continuous flow of the vapor producing substance from the integrated reservoir to the evaporative surface which provides an approximately constant vapor delivery rate. The advantages of the embodiments include a device that can be conveniently tossed or rolled, is compact in size, provides a maximal amount of stored vapor producing substance, has an efficient usage rate of the stored vapor producing substance and provides a long operating lifetime. Other advantages of the embodiments described include hands-free activation, self-righting after deployment, tamper resistance, non-energized operation, a modest number of low cost parts that are readily manufactured and assembled, and easy retrieval.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 15, 2012
    Applicant: Simpletek LLC
    Inventors: Gary M. Atkinson, Glenn Willoughby
  • Patent number: 6109105
    Abstract: Various structures for cantilever beam tunneling rate gyro devices formed on a single substrate are disclosed. A cantilever electrode having a plurality of portions extending from the substrate with one end of the cantilever is suspended above the substrate at a distance from a tunneling electrode so that a tunneling current flows through the cantilever and tunneling electrode in response to an applied bias voltage. The cantilever and tunneling electrodes form a circuit that produces an output signal. A force applied to the sensor urges the cantilever electrode to deflect relative to the tunneling electrode to modulate the output signal. The output signal is a control voltage that is applied between the cantilever electrode and a control electrode to maintain a constant tunneling current. In the preferred embodiment, two cantilever portions extend from the wafer surface forming a Y-shape. In a further embodiment, a strap is fabricated on the cantilever electrode.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: August 29, 2000
    Assignee: Hughes Electronics Corporation
    Inventors: Randall L. Kubena, Gary M. Atkinson, Dorian Challoner, Wallace Sunada
  • Patent number: 5905202
    Abstract: Various structures for cantilever beam tunneling rate gyro devices formed on a single substrate are disclosed. A cantilever electrode having a plurality of portions extending from the substrate with one end of the cantilever is suspended above the substrate at a distance from a tunneling electrode so that a tunneling current flows through the cantilever and tunneling electrode in response to an applied bias voltage. The cantilever and tunneling electrodes form a circuit that produces an output signal. A force applied to the sensor urges the cantilever electrode to deflect relative to the tunneling electrode to modulate the output signal. The output signal is a control voltage that is applied between the cantilever electrode and a control electrode to maintain a constant tunneling current. In the preferred embodiment, two cantilever portions extend from the wafer surface forming a Y-shape. In a further embodiment, a strap is fabricated on the cantilever electrode.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: May 18, 1999
    Assignee: Hughes Electronics Corporation
    Inventors: Randall L. Kubena, Gary M. Atkinson, Dorian Challoner, Wallace Sunada
  • Patent number: 5756895
    Abstract: Various structures for cantilever beam tunneling rate gyro devices formed on a single substrate are disclosed. A cantilever electrode having a plurality of portions extending from the substrate with one end of the cantilever is suspended above the substrate at a distance from a tunneling electrode so that a tunneling current flows through the cantilever and tunneling electrode in response to an applied bias voltage. The cantilever and tunneling electrodes form a circuit that produces an output signal. A force applied to the sensor urges the cantilever electrode to deflect relative to the tunneling electrode to modulate the output signal. The output signal is a control voltage that is applied between the cantilever electrode and a control electrode to maintain a constant tunneling current. In the preferred embodiment, two cantilever portions extend from the wafer surface forming a Y-shape. In a further embodiment, a strap is fabricated on the cantilever electrode.
    Type: Grant
    Filed: September 1, 1995
    Date of Patent: May 26, 1998
    Assignee: Hughes Aircraft Company
    Inventors: Randall L. Kubena, Gary M. Atkinson, Dorian Challoner, Wallace Sunada
  • Patent number: 5665253
    Abstract: A tunneling tip sensor and a method of photolithographically fabricating a unitary structure sensor on a semiconductor substrate are disclosed. A cantilever electrode is formed on the substrate with one end suspended above the substrate at a distance from a tunneling electrode so that a tunneling current flows through the cantilever and tunneling electrodes in response to an applied bias voltage. The cantilever and tunneling electrodes form a circuit that produces an output signal. A force applied to the sensor urges the cantilever electrode to deflect relative to the tunneling electrode to modulate the output signal. In the preferred embodiment, the output signal is a control voltage that is applied between the cantilever electrode and a control electrode to maintain a constant tunneling current. In an alternative embodiment, a lateral control electrode is fabricated to produce a lateral motion of the cantilever electrode such that the sensor detects a rotation.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: September 9, 1997
    Assignee: Hughes Electronics
    Inventors: Randall L. Kubena, Gary M. Atkinson
  • Patent number: 5596194
    Abstract: A tunneling tip sensor and method of photolithographically fabricating a unitary structure sensor on a semiconductor substrate are disclosed. A cantilever electrode is formed on the substrate with one end suspended above the substrate at a distance from a tunneling electrode so that a tunneling current flows through the cantilever and tunneling electrodes in response to an applied bias voltage. The cantilever and tunneling electrodes form a circuit that produces an output signal. A force applied to the sensor urges the cantilever electrode to deflect relative to the tunneling electrode to modulate the output signal. In the preferred embodiment, the output signal is a control voltage that is applied between the cantilever electrode and a control electrode to maintain a constant tunneling current. In an alternative embodiment, a lateral control electrode is fabricated to produce a lateral motion of the cantilever electrode such that the sensor detects a rotation.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: January 21, 1997
    Assignee: Hughes Aircraft Company
    Inventors: Randall L. Kubena, Gary M. Atkinson
  • Patent number: 5501822
    Abstract: A 3-dimensional opto-electronic system employs an optical communications channel between spaced circuit substrates. The beam from an in-line laser on one substrate is deflected by a turning mirror that is monolithically integrated on the substrate along with the laser and its associated electronic circuitry, and directed to an optical detector on another substrate. The deflection is accomplished with a turning mirror that is specially fabricated with a focused ion beam (FIB) so that it focuses or collimates as well as deflects the laser beam onto the photodetector. The mirror is initially formed with a flat surface, and is thereafter processed with the FIB to produce focusing curvatures in both x and y directions. The mirror is preferably spaced away from the laser, and is illuminated over substantially the full laser height to maximize its focal length for a given reflected spot size.
    Type: Grant
    Filed: May 5, 1994
    Date of Patent: March 26, 1996
    Assignee: Hughes Aircraft Company
    Inventors: Randy L. Kubena, Frederic P. Stratton, Gary M. Atkinson, Hugh McNulty, Jr., James W. Ward
  • Patent number: 5335243
    Abstract: A 3-dimensional opto-electronic system employs an optical communications channel between spaced circuit substrates. The beam from an in-line laser on one substrate is deflected by a turning mirror that is monolithically integrated on the substrate along with the laser and its associated electronic circuitry, and directed to an optical detector on another substrate. The deflection is accomplished with a turning mirror that is specially fabricated with a focused ion beam (FIB) so that it focuses or collimates as well as deflects the laser beam onto the photodetector. The mirror is initially formed with a flat surface, and is thereafter processed with the FIB to produce focusing curvatures in both x and y directions. The mirror is preferably spaced away from the laser, and is illuminated over substantially the full laser height to maximize its focal length for a given reflected spot size.
    Type: Grant
    Filed: November 4, 1992
    Date of Patent: August 2, 1994
    Assignee: Hughes Aircraft Company
    Inventors: Randy L. Kubena, Frederic P. Stratton, Gary M. Atkinson, Hugh McNulty, Jr., James W. Ward
  • Patent number: 5155053
    Abstract: A T-gate structure (28a) is fabricated on a microelectronic device substrate (10) using a trilevel resist system in combination with a two-step reactive ion etching (RIE) technique utilizing an oxygen plasma. The trilevel resist consists of a planarizing resist layer (12), masking layer (14) and imaging resist layer (16), which are formed on the surface (10a) of the substrate (10). A focused ion beam (18) is then used to expose the uppermost imaging layer (16) with an image having a width equal to the desired gate length of the T-gate structure (28a). The imaged area is developed and etched to form an opening (14a,16a) of the same width through the imaging layer (16) and also through the masking layer (14). In the first oxygen RIE step, the planarizing resist layer (12) is etched isotropically through the opening (14a,16a), partially down to the substrate surface (10a) to form a cavity (12a) having a width which is larger than the width of the opening (14a,16a).
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: October 13, 1992
    Assignee: Hughes Aircraft Company
    Inventor: Gary M. Atkinson
  • Patent number: 5047827
    Abstract: A high value, precision resistor (10) includes a doped region (18) having a boustrophedonic (folded or meandering) shape formed in a substrate (12). At least one section of the doped region (18) is formed by implantation using a focused ion beam. Where the entire doped region (18) is formed by the focused ion beam, the length thereof is selected to be large (10 to 100 times the width of the boustrophedonic shape) to maximize the accuracy of the resistor (10) by averaging over variations in grain size and implant dose. Alternatively, a probe resistor (32) and a plurality of similar unconnected doped sections (28) may be formed by means such as photolithography and flood ion implantation. The probe resistor (32) is measured at the desired operating temperature to determine the ratio of the measured resistance to the desired design resistance value.
    Type: Grant
    Filed: August 20, 1990
    Date of Patent: September 10, 1991
    Assignee: Hughes Aircraft Company
    Inventors: William M. Clark, Jr., Gary M. Atkinson, Wing Y. Lum, James R. Herring
  • Patent number: 5012153
    Abstract: A vacuum FET is designed to perform higher level functions such as logic AND, EXCLUSIVE OR (NOR), demultiplexing, or frequency multiplication with a single device. These higher level functions are accomplished by dividing the collector of the vacuum FET into multiple segments and by providing steering electrodes just above the emitter to deflect the field emission current to the various collector segments. The collector pattern, together with the configuration of the applied signals to the device, determines the higher order function performed.
    Type: Grant
    Filed: December 22, 1989
    Date of Patent: April 30, 1991
    Inventors: Gary M. Atkinson, M. DuChesne Courtney