Patents by Inventor Gary M. Dolny

Gary M. Dolny has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11646371
    Abstract: A lateral DMOS transistor structure includes a substrate of a first dopant polarity, a body region of the first dopant polarity, a source region, a drift region of a second dopant polarity, a drain region, a channel region, a gate structure over the channel region, a hybrid contact implant, of the second dopant polarity, in the source region, and a respective metal contact on or within each of the source region, gate structure, and drain region. The hybrid contact implant and the metal contact together form a hybrid contact defining first, second, and third electrical junctions. The first junction is a Schottky junction formed vertically between the source metal contact and the body. The second junction is an ohmic junction formed laterally between the source metal contact and the hybrid contact implant. The third junction is a rectifying PN junction between the hybrid contact implant and the channel region.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: May 9, 2023
    Assignees: Amplexia, LLC, X-FAB Global Services GmbH
    Inventors: Brendan Toner, Zhengchao Liu, Gary M Dolny, William R Richards, Jr.
  • Publication number: 20230054381
    Abstract: Devices and methods for providing a power transistor structure with a shallow source region include implanting a dopant of a first dopant polarity into a drift region on a source side of a gate structure to form a body region, the body region being self-aligned to, and extending under, the gate structure, and producing a shallow body region wherein the source side hybrid contact mitigates punch through of the shallow self-aligned body region and suppresses triggering of a parasitic bipolar. A retrograde body well, of the first dopant polarity, may be disposed beneath, and noncontiguous with, the shallow self-aligned body region, wherein the retrograde body well improves the electric field profile of the shallow self-aligned body region. A variety of power transistor structures are produced from such devices and methods.
    Type: Application
    Filed: November 2, 2022
    Publication date: February 23, 2023
    Applicants: Amplexia, LLC, X-FAB Global Services GmbH
    Inventors: Brendan TONER, Zhengchao LIU, Gary M DOLNY, William R RICHARDS, Manoj Chandrika Reghunathan, Stefan Eisenbrandt, Christoph Ellmers
  • Patent number: 11522053
    Abstract: Devices and methods for providing a power transistor structure with a shallow source region include implanting a dopant of a first dopant polarity into a drift region on a source side of a gate structure to form a body region, the body region being self-aligned to, and extending under, the gate structure, and producing a shallow body region wherein the source side hybrid contact mitigates punch through of the shallow self-aligned body region and suppresses triggering of a parasitic bipolar. A retrograde body well, of the first dopant polarity, may be disposed beneath, and noncontiguous with, the shallow self-aligned body region, wherein the retrograde body well improves the electric field profile of the shallow self-aligned body region. A variety of power transistor structures are produced from such devices and methods.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: December 6, 2022
    Assignees: Amplexia, LLC, X-FAB Global Services GmbH
    Inventors: Brendan Toner, Zhengchao Liu, Gary M. Dolny, William R. Richards, Manoj Chandrika Reghunathan, Stefan Eisenbrandt, Christoph Ellmers
  • Publication number: 20220254914
    Abstract: A lateral DMOS transistor structure includes a substrate of a first dopant polarity, a body region of the first dopant polarity, a source region, a drift region of a second dopant polarity, a drain region, a channel region, a gate structure over the channel region, a hybrid contact implant, of the second dopant polarity, in the source region, and a respective metal contact on or within each of the source region, gate structure, and drain region. The hybrid contact implant and the metal contact together form a hybrid contact defining first, second, and third electrical junctions. The first junction is a Schottky junction formed vertically between the source metal contact and the body. The second junction is an ohmic junction formed laterally between the source metal contact and the hybrid contact implant. The third junction is a rectifying PN junction between the hybrid contact implant and the channel region.
    Type: Application
    Filed: April 26, 2022
    Publication date: August 11, 2022
    Applicants: Amplexia, LLC, X-FAB Global Services GmbH
    Inventors: Brendan TONER, Zhengchao LIU, Gary M DOLNY, William R RICHARDS, JR.
  • Publication number: 20220181444
    Abstract: Devices and methods for providing a power transistor structure with a shallow source region include implanting a dopant of a first dopant polarity into a drift region on a source side of a gate structure to form a body region, the body region being self-aligned to, and extending under, the gate structure, and producing a shallow body region wherein the source side hybrid contact mitigates punch through of the shallow self-aligned body region and suppresses triggering of a parasitic bipolar. A retrograde body well, of the first dopant polarity, may be disposed beneath, and noncontiguous with, the shallow self-aligned body region, wherein the retrograde body well improves the electric field profile of the shallow self-aligned body region. A variety of power transistor structures are produced from such devices and methods.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 9, 2022
    Applicants: Silicet, LLC, X-FAB Global Services GmbH
    Inventors: Brendan TONER, Zhengchao LIU, Gary M. DOLNY, William R. RICHARDS, Manoj Chandrika Reghunathan, Stefan Eisenbrandt, Christoph Ellmers
  • Patent number: 11322611
    Abstract: A lateral DMOS transistor structure includes a substrate of a first dopant polarity, a body region of the first dopant polarity, a source region, a drift region of a second dopant polarity, a drain region, a channel region, a gate structure over the channel region, a hybrid contact implant, of the second dopant polarity, in the source region, and a respective metal contact on or within each of the source region, gate structure, and drain region. The hybrid contact implant and the metal contact together form a hybrid contact defining first, second, and third electrical junctions. The first junction is a Schottky junction formed vertically between the source metal contact and the body. The second junction is an ohmic junction formed laterally between the source metal contact and the hybrid contact implant. The third junction is a rectifying PN junction between the hybrid contact implant and the channel region.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: May 3, 2022
    Assignees: Silicet, LLC, X-FAB Global Services GmbH
    Inventors: Brendan Toner, Zhengchao Liu, Gary M Dolny, William R Richards, Jr.
  • Publication number: 20210134999
    Abstract: A lateral DMOS transistor structure includes a substrate of a first dopant polarity, a body region of the first dopant polarity, a source region, a drift region of a second dopant polarity, a drain region, a channel region, a gate structure over the channel region, a hybrid contact implant, of the second dopant polarity, in the source region, and a respective metal contact on or within each of the source region, gate structure, and drain region. The hybrid contact implant and the metal contact together form a hybrid contact defining first, second, and third electrical junctions. The first junction is a Schottky junction formed vertically between the source metal contact and the body. The second junction is an ohmic junction formed laterally between the source metal contact and the hybrid contact implant. The third junction is a rectifying PN junction between the hybrid contact implant and the channel region.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 6, 2021
    Applicants: Silicet, LLC, X-FAB Global Services GmbH
    Inventors: Brendan TONER, Zhengchao LIU, Gary M DOLNY, William R RICHARDS, JR.
  • Patent number: 10892362
    Abstract: A lateral DMOS transistor structure includes a substrate of a first dopant polarity, a body region of the first dopant polarity, a source region, a drift region of a second dopant polarity, a drain region, a channel region, a gate structure over the channel region, a hybrid contact implant, of the second dopant polarity, in the source region, and a respective metal contact on or within each of the source region, gate structure, and drain region. The hybrid contact implant and the metal contact together form a hybrid contact defining first, second, and third electrical junctions. The first junction is a Schottky junction formed vertically between the source metal contact and the body. The second junction is an ohmic junction formed laterally between the source metal contact and the hybrid contact implant. The third junction is a rectifying PN junction between the hybrid contact implant and the channel region.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: January 12, 2021
    Assignees: Silicet, LLC, X-FAB Global Services GmbH
    Inventors: Brendan Toner, Zhengchao Liu, Gary M Dolny, William R Richards, Jr.
  • Patent number: 10510869
    Abstract: Devices, structures, and methods thereof for providing a Schottky or Schottky-like contact as a source region and/or a drain region of a power transistor are disclosed. A power transistor structure comprises a substrate of a first dopant polarity, a drift region formed on or within the substrate, a body region formed on or within the drift region, a gate structure formed on or within the substrate, a source region adjacent to the gate structure, a drain region formed adjacent to the gate structure. At least one of the source region and the drain region is formed from a Schottky or Schottky-like contact substantially near a surface of the substrate, comprising a silicide layer and an interfacial dopant segregation layer. The Schottky or Schottky-like contact is formed by low-temperature annealing a dopant segregation implant in the source and/or drain region.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: December 17, 2019
    Assignee: SILICET, LLC
    Inventors: Gary M. Dolny, William R. Richards, Jr., Randall Milanowski
  • Publication number: 20180212041
    Abstract: Devices, structures, and methods thereof for providing a Schottky or Schottky-like contact as a source region and/or a drain region of a power transistor are disclosed. A power transistor structure comprises a substrate of a first dopant polarity, a drift region formed on or within the substrate, a body region formed on or within the drift region, a gate structure formed on or within the substrate, a source region adjacent to the gate structure, a drain region formed adjacent to the gate structure. At least one of the source region and the drain region is formed from a Schottky or Schottky-like contact substantially near a surface of the substrate, comprising a silicide layer and an interfacial dopant segregation layer. The Schottky or Schottky-like contact is formed by low-temperature annealing a dopant segregation implant in the source and/or drain region.
    Type: Application
    Filed: March 21, 2018
    Publication date: July 26, 2018
    Applicant: Silicet, LLC
    Inventors: Gary M. DOLNY, William R. RICHARDS, JR., Randall MILANOWSKI
  • Patent number: 9947787
    Abstract: Devices, structures, and methods thereof for providing a Schottky or Schottky-like contact as a source region and/or a drain region of a power transistor are disclosed. A power transistor structure comprises a substrate of a first dopant polarity, a drift region formed on or within the substrate, a body region formed on or within the drift region, a gate structure formed on or within the substrate, a source region adjacent to the gate structure, a drain region formed adjacent to the gate structure. At least one of the source region and the drain region is formed from a Schottky or Schottky-like contact substantially near a surface of the substrate, comprising a silicide layer and an interfacial dopant segregation layer. The Schottky or Schottky-like contact is formed by low-temperature annealing a dopant segregation implant in the source and/or drain region.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: April 17, 2018
    Assignee: SILICET, LLC
    Inventors: Gary M. Dolny, William R. Richards, Jr., Randall Milanowski
  • Publication number: 20170323970
    Abstract: Devices, structures, and methods thereof for providing a Schottky or Schottky-like contact as a source region and/or a drain region of a power transistor are disclosed. A power transistor structure comprises a substrate of a first dopant polarity, a drift region formed on or within the substrate, a body region formed on or within the drift region, a gate structure formed on or within the substrate, a source region adjacent to the gate structure, a drain region formed adjacent to the gate structure. At least one of the source region and the drain region is formed from a Schottky or Schottky-like contact substantially near a surface of the substrate, comprising a silicide layer and an interfacial dopant segregation layer. The Schottky or Schottky-like contact is formed by low-temperature annealing a dopant segregation implant in the source and/or drain region.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 9, 2017
    Applicant: Silicet, LLC
    Inventors: Gary M. DOLNY, William R. RICHARDS, JR., Randall MILANOWSKI
  • Patent number: 8884365
    Abstract: A field effect transistor (FET) includes a body region of a first conductivity type disposed within a semiconductor region of a second conductivity type and a gate trench extending through the body region and terminating within the semiconductor region. The FET also includes a flared shield dielectric layer disposed in a lower portion of the gate trench, the flared shield dielectric layer including a flared portion that extends under the body region. The FET further includes a conductive shield electrode disposed in the trench and disposed, at least partially, within the flared shield dielectric.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 11, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Christopher Boguslaw Kocon, Steven P. Sapp, Dean E. Probst, Nathan L. Kraft, Thomas E. Grebs, Rodney S. Ridley, Gary M. Dolny, Bruce D. Marchant, Joseph A. Yedinak
  • Patent number: 8803207
    Abstract: In one general aspect, an apparatus can include a trench disposed in a semiconductor region, a shield dielectric layer lining a lower portion of a sidewall of the trench and a bottom surface of the trench, and a gate dielectric lining a upper portion of the sidewall of the trench. The apparatus can also include a shield electrode disposed in a lower portion of the trench and insulated from the semiconductor region by the shield dielectric layer, and an inter-electrode dielectric (IED) disposed in the trench over the shield electrode where the shield electrode has a curved top surface.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: August 12, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Thomas E. Grebs, Nathan Lawrence Kraft, Rodney Ridley, Gary M. Dolny, Joseph A. Yedinak, Christopher Boguslaw Kocon, Ashok Challa
  • Publication number: 20130248991
    Abstract: A field effect transistor (FET) includes a body region of a first conductivity type disposed within a semiconductor region of a second conductivity type and a gate trench extending through the body region and terminating within the semiconductor region. The FET also includes a flared shield dielectric layer disposed in a lower portion of the gate trench, the flared shield dielectric layer including a flared portion that extends under the body region. The FET further includes a conductive shield electrode disposed in the trench and disposed, at least partially, within the flared shield dielectric.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 26, 2013
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Hamza YILMAZ, Daniel CALAFUT, Christopher Boguslaw KOCON, Steven P. SAPP, Dean E. PROBST, Nathan L. KRAFT, Thomas E. GREBS, Rodney S. RIDLEY, Gary M. DOLNY, Bruce D. MARCHANT, Joseph A. YEDINAK
  • Patent number: 8441069
    Abstract: A field effect transistor includes a gate trench extending into a semiconductor region. The gate trench has a recessed gate electrode disposed therein. A source region in the semiconductor region flanks each side of the gate trench. A conductive material fills an upper portion of the gate trench so as to make electrical contact with the source regions along upper sidewalls of the gate trench. The conductive material is insulated from the recessed gate electrode.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: May 14, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Christopher Boguslaw Kocon, Steven P. Sapp, Dean E. Probst, Nathan L. Kraft, Thomas E. Grebs, Rodney S. Ridley, Gary M. Dolny, Bruce D. Marchant, Joseph A. Yedinak
  • Publication number: 20120220091
    Abstract: A method for forming thick oxide at the bottom of a trench formed in a semiconductor substrate includes forming a conformal oxide film by a sub-atmospheric chemical vapor deposition process that fills the trench and covers a top surface of the substrate. The method also includes etching the oxide film off the top surface of the substrate and inside the trench to leave a substantially flat layer of oxide having a target thickness at the bottom of the trench.
    Type: Application
    Filed: March 12, 2012
    Publication date: August 30, 2012
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas E. Grebs, Nathan L. Kraft, Dean E. Probst, Rodney S. Ridley, Steven P. Sapp, Qi Wang, Chongman Yun, J.G. Lee, Peter H. Wilson, Joseph A. Yedinak, J.Y. Jung, H.C. Jang, Babak S. Sani, Richard Stokes, Gary M. Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher L. Rexer, Christopher B. Kocon, Debra S. Woolsey
  • Publication number: 20120153384
    Abstract: A semiconductor package device houses a die which comprises a power device, and the die further includes a silicon region over a substrate, a first plurality of trenches extending in the silicon region; a contiguous sinker trench extending along the perimeter of the die so as to completely surround the first plurality of trenches, the sinker trench extending from a top surface of the die through the silicon region, the sinker trench being lined with an insulator only along the sinker trench sidewalls so that a conductive material filling the sinker trench makes electrical contact with the substrate along the bottom of the sinker trench and makes electrical contact with an interconnect layer along the top of the sinker trench; and a plurality of interconnect balls arranged in a grid array, an outer group of the plurality of interconnect balls electrically connecting to the conductive material in the sinker trench.
    Type: Application
    Filed: January 10, 2012
    Publication date: June 21, 2012
    Inventors: Thomas E. Grebs, Gary M. Dolny
  • Publication number: 20120104490
    Abstract: A field effect transistor includes a body region of a first conductivity type over a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminates within the semiconductor region. At least one conductive shield electrode is disposed in the gate trench. A gate electrode is disposed in the gate trench over but insulated from the at least one conductive shield electrode. A shield dielectric layer insulates the at lease one conductive shield electrode from the semiconductor region. A gate dielectric layer insulates the gate electrode from the body region. The shield dielectric layer is formed such that it flares out and extends directly under the body region.
    Type: Application
    Filed: October 21, 2011
    Publication date: May 3, 2012
    Inventors: Hamza Yilmaz, Daniel Calafut, Christopher Boguslaw Kocon, Steven P. Sapp, Dean E. Probst, Nathan L. Kraft, Thomas E. Grebs, Rodney S. Ridley, Gary M. Dolny, Bruce D. Marchant, Joseph A. Yedinak
  • Patent number: 8148233
    Abstract: A semiconductor power device includes a plurality of groups of stripe-shaped gate trenches extending in a silicon region over a substrate, and a plurality of stripe-shaped sinker trenches each extending between two adjacent groups of the plurality of groups of stripe-shaped gate trenches. The plurality of stripe-shaped sinker trenches extend from a top surface of the silicon region through the silicon region and terminate within the substrate. The plurality of stripe-shaped sinker trenches are lined with an insulator along the sinker trench sidewalls so that a conductive material filling each sinker trench makes electrical contact with the substrate along the bottom of the sinker trench and makes electrical contact with an interconnect layer along the top of the sinker trench.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: April 3, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Thomas E. Grebs, Gary M. Dolny