Patents by Inventor Gary Michael Itzel

Gary Michael Itzel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10385727
    Abstract: A turbine nozzle includes an airfoil that extends in span from an inner band to an outer band where the inner band and the outer band define inner and outer flow boundaries of the turbine nozzle. At least one of the inner band and the outer band define a first set of cooling channels and a second set of cooling channels formed beneath a gas side surface of the corresponding inner band or outer band. The inner band or the outer band further define a coolant distribution plenum that is in fluid communication with the first and second sets of cooling channels. The coolant distribution plenum provides a stream of coolant to at least one of the first set of cooling channels and the second set of cooling channels.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: August 20, 2019
    Assignee: General Electric Company
    Inventors: Sandip Dutta, Benjamin Paul Lacy, Gary Michael Itzel, James William Vehr
  • Publication number: 20190169999
    Abstract: A turbine component includes an airfoil having an airfoil chamber disposed within the airfoil, the airfoil chamber configured to supply a coolant through the airfoil. The tip of the airfoil includes a rail extending radially from the tip plate, the rail including an inner rail surface defining a tip pocket therein, an outer rail surface and a radially outward facing rail surface between the inner rail surface and the outer rail surface. A tip rail cavity is within and partially circumscribes the rail, the tip rail cavity receiving a coolant flow. A tip rail cooling passage includes an inlet fluidly coupled to the tip rail cavity, a passage length fluidly coupled to the inlet and partially circumscribing the rail, a metering element fluidly coupled to the passage length, and an outlet fluidly coupled to the metering element and extending through the radially outward facing rail surface.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 6, 2019
    Inventors: Nicholas William Rathay, Gary Michael Itzel
  • Patent number: 10287894
    Abstract: A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. A plurality of nested cooling channels in the trailing edge portion of the airfoil permit passage of a cooling fluid from an interior of the turbine component to an exterior of the turbine component at the trailing edge portion. A method of making a turbine component includes forming an airfoil having a leading edge, a trailing edge portion extending to a trailing edge, and a plurality of nested cooling channels in the trailing edge portion. Each nested cooling channel fluidly connects an interior of the turbine component with an exterior of the turbine component at the trailing edge portion. A method of cooling a turbine component is also disclosed.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: May 14, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sandip Dutta, James Zhang, Gary Michael Itzel, John McConnell Delvaux, Matthew Troy Hafner
  • Patent number: 10260356
    Abstract: The present disclosure is directed to a nozzle cooling system for a gas turbine engine. An impingement plate is positioned radially inwardly from a radially inner surface of an inner side wall of a nozzle. The impingement plate and the inner side wall collectively define an inner chamber. The impingement plate includes a first portion defining one or more impingement apertures and a second portion defining one or more post-impingement apertures. A duct plate encloses the first portion of the impingement plate. The duct plate, the first portion of the impingement plate, and inner side wall collectively define an outer chamber in fluid communication with the inner chamber through the one or more impingement apertures. Compressed air from the outer chamber flows through the one or more impingement apertures into the inner chamber and exits the inner chamber through the one or more post-impingement apertures.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: April 16, 2019
    Assignee: General Electric Company
    Inventors: Travis Michael Gaulden, Gary Michael Itzel, Robert Carl Meyer
  • Patent number: 10208614
    Abstract: Apparatuses are disclosed including a first article, a second article, a sewing member and a thermal break. The second article includes a second material composition having a second thermal tolerance greater than a first thermal tolerance of a first material composition of the first article. The sealing member is disposed between and contacts the first article and the second article, and includes a third material composition having a third thermal tolerance less than the second thermal tolerance and less than an operating temperature of the second article. The thermal break is defined by the second article, and is proximate to the sealing member and partitioned from the sealing member by a portion of the second article. The thermal break interrupts a thermal conduction path from the second article to the sealing member. The first article and the second article compress the sealing member, forming a thermal gradient-tolerant seal.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: February 19, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Troy Hafner, Gary Michael Itzel, Sandip Dutta
  • Publication number: 20180340427
    Abstract: The present disclosure is directed to a rotor blade for a turbomachine. The rotor blade includes an airfoil defining a cooling passage extending between a root and a tip of the airfoil. The airfoil further defines a pocket positioned between the cooling passage and an exterior surface of the airfoil and spaced apart from the cooling passage and the exterior surface. The pocket provides a thermal impediment between the cooling passage and the exterior surface of the airfoil.
    Type: Application
    Filed: May 24, 2017
    Publication date: November 29, 2018
    Inventors: Sandip Dutta, Gary Michael Itzel
  • Patent number: 10053989
    Abstract: A cooling system according to an embodiment includes: a pin fin bank cooling circuit; and an air feed cavity for supplying cooling air to the pin fin bank cooling circuit; wherein the pin fin bank cooling circuit extends radially outward from and at least partially covers at least one central plenum of a multi-wall blade and a first set of near wall cooling channels of the multi-wall blade.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: August 21, 2018
    Assignee: General Electric Company
    Inventors: David Wayne Weber, Gregory Thomas Foster, Gary Michael Itzel, Brendon James Leary, Joseph Anthony Weber
  • Patent number: 10053988
    Abstract: An article and method of forming an article are provided. The article includes a body portion having an inner surface and an outer surface, the inner surface defining an inner region, and at least one cooling feature positioned within the inner region. The body portion includes a first material and the at least one cooling feature includes a second material, the second material having a higher thermal conductivity than the first material. The method includes manufacturing a body portion by an additive manufacturing technique and manufacturing at least one cooling feature by the additive manufacturing technique. The body portion includes a first material and the at least one cooling feature includes a second material, the second material having a higher thermal conductivity than the first material.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: August 21, 2018
    Assignee: General Electric Company
    Inventors: Gary Michael Itzel, Benjamin Paul Lacy
  • Publication number: 20180230841
    Abstract: A seal in a gas turbine for sealing a radial gap defined between rotating and stationary structure. The rotating structure may include a row of rotor blades. The seal may include a pad attached to the stationary structure. The pad may include an abradable structure. The pad may further include a liner attached to and covering an outer surface of the abradable structure. The stationary structure to which the pad is attached may define an axial section of the outer radial boundary of the annular flowpath, the axial section coinciding axially with an axial position of the row of rotor blades.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Applicant: General Electric Company
    Inventors: Gary Michael Itzel, Ibrahim Sezer
  • Patent number: 10024171
    Abstract: An article and method of cooling an article are provided. The article includes a body portion, a plurality of partitions within the body portion, and at least one aperture in each of the partitions, the at least one aperture arranged and disposed to direct fluid towards an inner surface of the body portion. The plurality of partitions form at least one up-pass cavity and at least one re-use cavity arranged and disposed to receive the fluid from the at least one aperture in one of the partitions. The method includes providing the article having an up-pass partition and a re-use partition, generating a first fluid flow through the at least one aperture in the up-pass partition, receiving a post-impingement fluid within the re-use cavity, and generating a re-use fluid flow through the at least one aperture in the re-use partition, the re-use fluid flow being generated from the post-impingement fluid.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: July 17, 2018
    Assignee: General Electric Company
    Inventor: Gary Michael Itzel
  • Publication number: 20180187552
    Abstract: A component configured for impingement cooling includes an inner wall defining a plurality of apertures. Each aperture of the plurality of apertures is configured to emit a cooling fluid therethrough. The component also includes an outer wall spaced from the inner wall. The outer wall and the inner wall extend along a longitudinal axis of the component. The component further includes a plurality of angled walls extending between the inner wall and the outer wall. The plurality of angled walls define a plurality of angled channels in fluid communication with the plurality of apertures. Each angled wall of the plurality of angled walls extends at an acute angle relative to the longitudinal axis.
    Type: Application
    Filed: January 3, 2017
    Publication date: July 5, 2018
    Inventors: Nicholas William Rathay, James Albert Tallman, Gary Michael Itzel
  • Publication number: 20180187557
    Abstract: An article is disclosed including a manifold, an article wall having at least one external aperture, and a post-impingement cavity disposed between the manifold and the article wall. The manifold includes an impingement plate defining a plenum having a plenum surface, and at least one impingement aperture. The at least one impingement aperture interfaces with the plenum at an intake aperture having a flow modification structure, which, together with the at least one impingement aperture, defines an exhaust aperture. The manifold exhausts a fluid from the plenum into the intake aperture, through the at least one impingement aperture, out the exhaust aperture, into the post-impingement cavity, and through the at least one external aperture.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 5, 2018
    Inventors: Ibrahim SEZER, Gary Michael ITZEL, Jamie Javier MALDONADO, Sandip DUTTA
  • Patent number: 10006294
    Abstract: An article and method of cooling an article are provided. The article includes a body portion having an inner surface and an outer surface, the inner surface defining an inner region, at least one up-pass cavity formed within the inner region and extending from a base of the body portion towards a tip of the body portion, and a cap formed in each up-pass cavity, each cap being adjacent to the tip of the body portion, having at least one aperture formed therein, and being arranged and disposed to direct fluid towards the tip of the body potion. The method includes directing a fluid into the first up-pass cavity, passing the fluid through at least one aperture in the cap, contacting the tip of the article with the fluid, receiving the post-impingement fluid within a down-pass cavity, and directing the post-impingement fluid through the down-pass cavity.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: June 26, 2018
    Assignee: General Electric Company
    Inventors: Gary Michael Itzel, Srikanth Chandrudu Kottilingam
  • Patent number: 9995146
    Abstract: A turbine airfoil includes a leading edge and a trailing edge. Also included is a cooling channel extending in a radial direction and tapering inwardly toward the trailing edge, the cooling channel at least partially defined by a pressure side face and a suction side face. Further included is a first plurality of turbulators protruding from one of the pressure side face and the suction side face to define a first height, the first plurality of turbulators extending toward the trailing edge of the turbine airfoil and spaced radially from each other. Yet further included is a second plurality of turbulators protruding from one of the pressure side face and the suction side face to define a second height that is less than the first height, the second plurality of turbulators extending toward the trailing edge of the turbine airfoil and spaced radially from each other.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: June 12, 2018
    Assignee: General Electric Company
    Inventors: Adebukola Oluwaseun Benson, Nicholas Alvin Hogberg, Gary Michael Itzel, Mitchell Allan Merrill, Xiuzhang James Zhang
  • Patent number: 9995151
    Abstract: An article is disclosed including a manifold, an article wall having at least one external aperture, and a post-impingement cavity disposed between the manifold and the article wall. The manifold includes an impingement plate defining a plenum having a plenum surface, and at least one impingement aperture. The at least one impingement aperture interfaces with the plenum at an intake aperture having a flow modification structure, which, together with the at least one impingement aperture, defines an exhaust aperture. The manifold exhausts a fluid from the plenum into the intake aperture, through the at least one impingement aperture, out the exhaust aperture, into the post-impingement cavity, and through the at least one external aperture.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: June 12, 2018
    Assignee: General Electric Company
    Inventors: Ibrahim Sezer, Gary Michael Itzel, Jaime Javier Maldonado, Sandip Dutta
  • Patent number: 9995172
    Abstract: A turbine nozzle includes an airfoil that extends in span from an inner band to an outer band where the inner band and the outer band define inner and outer flow boundaries of the turbine nozzle. At least one of the inner band and the outer band defines a plurality of cooling channels formed and a coolant discharge plenum beneath a gas side surface of the corresponding inner or outer band that is in fluid communication with the cooling channels. The coolant discharge plenum is formed within the inner band or the outer band downstream from the cooling channels and upstream from a plurality of coolant discharge ports.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: June 12, 2018
    Assignee: General Electric Company
    Inventors: Sandip Dutta, Benjamin Paul Lacy, Gary Michael Itzel, Stephen Paul Wassynger
  • Publication number: 20180149028
    Abstract: The present disclosure is directed to a gas turbine engine that includes a hot gas path component having an inner surface and defining a hot gas path component cavity. An impingement insert is positioned within the hot gas path component cavity. The impingement insert includes an inner surface and an outer surface and defines an impingement insert cavity and a plurality of impingement apertures fluidly coupling the impingement insert cavity and the hot gas path component cavity. A plurality of pins extends from the outer surface of the impingement insert to the inner surface of the hot gas path component.
    Type: Application
    Filed: November 30, 2016
    Publication date: May 31, 2018
    Inventors: Sandip Dutta, Benjamin Paul Lacy, Gary Michael Itzel, Zachary John Snider
  • Patent number: 9976441
    Abstract: An article and method of forming an article are provided. The article includes a body portion separating an inner region and an outer region, an aperture in the body portion, the aperture fluidly connecting the inner region to the outer region, and a conduit extending from an outer surface of the body portion at the aperture and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The method includes providing a body portion separating an inner region and an outer region, providing an aperture in the body portion, and forming a conduit over the aperture, the conduit extending from an outer surface of the body portion and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The article is arranged and disposed for insertion within a hot gas path component.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: May 22, 2018
    Assignee: General Electric Company
    Inventors: Benjamin Paul Lacy, Gary Michael Itzel, Srikanth Chandrudu Kottilingam, Sandip Dutta, David Edward Schick
  • Patent number: 9970302
    Abstract: A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage is coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: May 15, 2018
    Assignee: General Electric Company
    Inventors: Benjamin Paul Lacy, Srikanth Chandrudu Kottilingam, Carlos Miguel Miranda, Gary Michael Itzel
  • Publication number: 20180030837
    Abstract: Turbine components are disclosed including a component wall defining a constrained portion, a manifold having an impingement wall, and a post-impingement cavity disposed between the manifold and the component wall. The impingement wall includes a wall thickness and defines a plenum and a tapered portion. The tapered portion tapers toward the constrained portion and includes a plurality of impingement apertures and a wall inflection. The wall inflection is disposed proximal to the constrained portion, and the tapered portion is integrally formed as a single, continuous object. The wall inflection may include an inflection radius of less than about 3 times the wall thickness of the impingement wall, or the tapered portion may include a consolidated portion with the impingement wall extending across the plenum. A method for forming the turbine component is also disclosed, including forming the tapered portion as a single, continuous tapered portion by an additive manufacturing technique.
    Type: Application
    Filed: July 26, 2016
    Publication date: February 1, 2018
    Inventors: Sandip DUTTA, Benjamin Paul LACY, Gary Michael ITZEL, Joseph Anthony WEBER, David Edward SCHICK