Patents by Inventor Gary N. Bonadies

Gary N. Bonadies has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6278400
    Abstract: Two discrete transmit/receive (T/R) channels are implemented in a single common T/R module package having the capability of providing combined functions, control and power conditioning while utilizing a single multi-cavity, multi-layer substrate comprised of high or low temperature cofired ceramic layers. The ceramic layers have outer surfaces including respective metallization patterns of ground planes and stripline conductors as well as feedthroughs or vertical vias formed therein for providing three dimensional routing of both shielded RF and DC power and logic control signals so as to configure, among other things, a pair of RF manifold signal couplers which are embedded in the substrate and which transition to a multi-pin blind mate press-on RF connector assembly at the front end of the package.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: August 21, 2001
    Assignee: Northrop Grumman Corporation
    Inventors: John W. Cassen, Edward L. Rich, III, Gary N. Bonadies, John S. Fisher, John W. Gipprich, John D. Gornto, Daniel J. Heffernan, David A. Herlihy, Scott C. Tolle, Patrick K. Richard, David W. Strack, Scott K. Suko, Timothy L. Eder, Chad E. Wilson, Gary L. Ferrell, Stephanie A. Parks
  • Patent number: 6114986
    Abstract: Two discrete transmit/receive (T/R) channels are implemented in a single common T/R module package having the capability of providing combined functions, control and power conditioning while utilizing a single multi-cavity, multi-layer substrate comprised of high temperature cofired ceramic (HTCC) layers. The ceramic layers have outer surfaces including respective metallization patterns of ground planes and stripline conductors as well as feedthroughs or vertical vias formed therein for providing three dimensional routing of both shielded RF and DC power and logic control signals so as to configure, among other things, a pair of RF manifold signal couplers which are embedded in the substrate and which transition to a multi-pin blind mate press-on RF connector assembly at the front end of the package.
    Type: Grant
    Filed: September 23, 1998
    Date of Patent: September 5, 2000
    Assignee: Northrop Grumman Corporation
    Inventors: John W. Cassen, Stephanie A. Parks, Edward L. Rich, III, Gary N. Bonadies, Gary L. Ferrell, John S. Fisher, John W. Gipprich, John D. Gornto, Daniel J. Heffernan, David A. Herlihy, Andrew J. Piloto, Patrick K. Richard, David W. Strack, Scott K. Suko
  • Patent number: 6097335
    Abstract: A transmit/receive (T/R) module adapted for use in a radar system. The module has a unified structure including a layered substrate on and in which two T/R channel circuits are integrated. The channel circuits make use of power distribution, channel controller, and RF signal routing circuitry, partly on a channel shared basis. In the RF routing circuitry, respective coupler elements are employed to combine RF receive signals for output to an RF receive manifold and to split an RF transmit signal from a transmit manifold into separate RF transmit signals for input to the T/R channel circuits.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: August 1, 2000
    Assignee: Northrop Grumman Corporation
    Inventors: John W. Cassen, Stephanie A. Parks, Edward L. Rich, III, Gary N. Bonadies, Gary L. Ferrell, John S. Fisher, John W. Gipprich, John D. Gornto, Daniel J. Heffernan, David A. Herlihy, Patrick K. Richard, David W. Strack, Scott K. Suko
  • Patent number: 6094161
    Abstract: Two discrete transmit/receive (T/R) channels are implemented in a single common T/R module package having the capability of providing combined functions, control and power conditioning while utilizing a single multi-cavity, multi-layer substrate comprised of high temperature cofired ceramic (HTCC) layers. The ceramic layers have outer surfaces including respective metallization patterns of ground planes and stripline conductors as well as feedthroughs or vertical vias formed therein for providing three dimensional routing of both shielded RF and DC power and logic control signals so as to configure, among other things, a pair of RF manifold signal couplers which are embedded in the substrate and which transition to a multi-pin blind mate press-on RF connector assembly at the front end of the package.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: July 25, 2000
    Assignee: Northrop Grumman Corporation
    Inventors: John W. Cassen, Stephanie A. Parks, Edward L. Rich, III, Gary N. Bonadies, Gary L. Ferrell, John S. Fisher, John W. Gipprich, John D. Gornto, Daniel J. Heffernan, David A. Herlihy, Andrew J. Piloto, Patrick K. Richard, David W. Strack, Scott K. Suko
  • Patent number: 6034633
    Abstract: A transmit/receive (T/R) module adapted for use in a radar system. The module has a unified structure including a layered substrate on and in which two T/R channel circuits are integrated. The channel circuits make use of power distribution, channel controller, and RF signal routing circuitry, partly on a channel shared basis. In the RF routing circuitry, respective coupler elements are employed to combine RF receive signals for output to an RF receive manifold and to split an RF transmit signal from a transmit manifold into separate RF transmit signals for input to the T/R channel circuits.
    Type: Grant
    Filed: September 23, 1998
    Date of Patent: March 7, 2000
    Assignee: Northrop Grumman Corporation
    Inventors: John W. Cassen, Stephanie A. Parks, Edward L. Rich, III, Gary N. Bonadies, Gary L. Ferrell, John S. Fisher, John W. Gipprich, John D. Gornto, Daniel J. Heffernan, David A. Herlihy, Patrick K. Richard, David W. Strack, Scott K. Suko
  • Patent number: 6005531
    Abstract: An antenna assembly for an active electronically scanned array includes, among other things: an array of antenna elements; an RF signal feed and circulator assembly coupled to said antenna elements and forming thereby an array of radiating structures; a generally planar RF manifold assembly having regularly spaced openings therein located behind and normal to the radiating structures; an array of T/R modules connected to the array of radiating structures and having respective RF connector assemblies forming a portion of an RF interface at one end portion of each of the modules which project upwardly through said spaced openings in the RF manifold and wherein the respective connector assemblies thereof connect to at least one immediately adjacent circulator as well as to transmit and receive manifold portions of the RF manifold; each of the T/R modules further have a heat sink plate on the back side thereof which is positioned against one of a number of elongated liquid coolant circulating coldplates connected
    Type: Grant
    Filed: September 23, 1998
    Date of Patent: December 21, 1999
    Assignee: Northrop Grumman Corporation
    Inventors: John W. Cassen, Gary N. Bonadies, Patrick K. Richard, David A. Herlihy, Ayn U. Fuller, Daniel H. Wenzlick, Richard C. Kapraun, Mark R. Schrote, Kerry M. Yon, H. Halley Lisle, IV, Toby Hess, Edward L. Rich, III, George T. Hall, Brian T. Drude
  • Patent number: 4815339
    Abstract: An apparatus for stopping a rotating antenna shaft at a distinct position intermediate two end stop positions 23, 24. Paddle 12 on the rotating shaft 21 cooperates with intermediate stop assembly 26 to arrest bi-directional shaft rotation at an intermediate point when such stopping is desired, the intermediate stop assembly being activated by springs 38, 39 and deactivated by action of solenoids 30, 31.
    Type: Grant
    Filed: October 24, 1986
    Date of Patent: March 28, 1989
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Gary N. Bonadies, Mark O'Clair, David W. Parry