Patents by Inventor Gary R. Pickrell

Gary R. Pickrell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7632440
    Abstract: Porous polymers are made by adding biologically active agent and growth substrates (e.g., yeast and sugar, preferably in the presence of water or other suitable fluid) to a polymer forming material, which may be a liquid. The yeast acts on the sugar, forming carbon dioxide gas bubbles. The material is then polymerized so that the gas bubbles create permanent pores within the polymeric material. The polymer can be an epoxy for example. The pores will contain residue of the yeast. Also, porous metals can be made by combining a metal powder with yeast, sugar, and water. The porous metal paste is then sintered. Porous ceramics and semiconductors can be made by combining the yeast and sugar with a ceramic forming liquid such as polysilazane. Polysilazane converts to silica when heated, which helps to bind the ceramic or semiconductor powder particles at a reduced temperature. Biological agents other than yeast (e.g. bacteria, enzymes), and growth substrates other than sugar can also be used.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: December 15, 2009
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventor: Gary R. Pickrell
  • Patent number: 7157115
    Abstract: Porous polymers are made by adding biologically active agent and growth substrates (e.g., yeast and sugar, preferably in the presence of water or other suitable fluid) to a polymer forming material, which may be a liquid. The yeast acts on the sugar, forming carbon dioxide gas bubbles. The material is then polymerized so that the gas bubbles create permanent pores within the polymeric material. The polymer can be an epoxy for example. The pores will contain residue of the yeast. Also, porous metals can be made by combining a metal powder with yeast, sugar, and water. The porous metal paste is then sintered. Porous ceramics and semiconductors can be made by combining the yeast and sugar with a ceramic forming liquid such as polysilazane. Polysilazane converts to silica when heated, which helps to bind the ceramic or semiconductor powder particles at a reduced temperature. Biological agents other than yeast (e.g. bacteria, enzymes), and growth substrates other than sugar can also be used.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: January 2, 2007
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventor: Gary R. Pickrell
  • Patent number: 6773825
    Abstract: An improved porous article and a method for forming such porous article are provided. A mixture of ceramic or articles and pliable organic hollow spheres is prepared in a liquid typically as a suspension. The article is formed by pressing, slip casting, extruding or injection molding the mixture. The article is dried to remove the liquid, and then is fired so that the particles are bonded such as by sintering, and the organic spheres are eliminated, resulting in a strong porous article having uniformly spaced interconnected voids.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: August 10, 2004
    Assignee: Porvair Corporation
    Inventors: Gary R. Pickrell, Kenneth R. Butcher, Chi Li Lin
  • Publication number: 20040110022
    Abstract: An improved porous article and a method for forming such porous article are provided. A mixture of ceramic or metal particles and pliable organic hollow spheres is prepared in a liquid, typically as a suspension. The article is formed by pressing, slip casting, extruding or injection molding the mixture. The article is dried to remove the liquid, and then is fired so that the particles are bonded such as by sintering, and the organic spheres are eliminated, resulting in a strong porous article having uniformly spaced interconnected voids.
    Type: Application
    Filed: May 23, 2003
    Publication date: June 10, 2004
    Applicant: Porvair Corporation
    Inventors: Gary R. Pickrell, Kenneth R. Butcher, Chi Li Lin
  • Publication number: 20040047536
    Abstract: Viscous flow and volume consolidation which may cause sensor output drift are avoided in a fiber optic sensor by using a body of crystalline and preferably monocrystalline material to establish the transducer gap. Use of a monocrystalline material also reduces chemical reactivity of the sensor with substances which may be present where the sensor is deployed. The increased dimensional stability of the monocrystalline body in a tube-based, V-groove-based or other type of fiber optic sensor reduces the need for and frequency of recalibration.
    Type: Application
    Filed: September 4, 2003
    Publication date: March 11, 2004
    Inventors: Gary R. Pickrell, Anbo Wang
  • Patent number: 6592787
    Abstract: An improved porous article and a method for forming such porous article are provided. A mixture of ceramic or metal particles and pliable organic hollow spheres is prepared in a liquid, typically as a suspension. The article is formed by pressing, slip casting, extruding or injection molding the mixture. The article is dried to remove the liquid, and then is fired so that the particles are bonded such as by sintering, and the organic spheres are eliminated, resulting in a strong porous article having uniformly spaced interconnected voids.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: July 15, 2003
    Assignee: Porvair Corporation
    Inventors: Gary R. Pickrell, Kenneth R. Butcher, Chi Li Lin
  • Publication number: 20010046608
    Abstract: An improved porous article and a method for forming such porous article are provided. A mixture of ceramic or metal particles and pliable organic hollow spheres is prepared in a liquid, typically as a suspension. The article is formed by pressing, slip casting, extruding or injection molding the mixture. The article is dried to remove the liquid, and then is fired so that the particles are bonded such as by sintering, and the organic spheres are eliminated, resulting in a strong porous article having uniformly spaced interconnected voids.
    Type: Application
    Filed: March 7, 2001
    Publication date: November 29, 2001
    Inventors: Gary R. Pickrell, Kenneth R. Butcher, Chi Li Lin
  • Patent number: 6235665
    Abstract: An improved porous ceramic article and a method for forming such porous ceramic article. A mixture of ceramic particles and pliable organic hollow spheres is prepared in a liquid, typically as a suspension. The article is formed by pressing, slip casting, extruding or injection molding the mixture. The article is dried to remove the liquid, and then is fired so that the ceramic particles are bonded such as by sintering, and the organic spheres are burned off, resulting in a strong porous ceramic article having uniformly spaced interconnected voids.
    Type: Grant
    Filed: August 11, 1999
    Date of Patent: May 22, 2001
    Assignee: Porvair Corporation
    Inventors: Gary R. Pickrell, Kenneth R. Butcher
  • Patent number: 6210612
    Abstract: An improved porous ceramic article and a method for forming such porous ceramic article. A mixture of ceramic particles and pliable organic hollow spheres is prepared in a liquid, typically as a suspension. The article is formed by pressing, slip casting, extruding or injection molding the mixture. The article is dried to remove the liquid, and then is fired so that the ceramic particles are bonded such as by sintering, and the organic spheres are burned off, resulting in a strong porous ceramic article having uniformly spaced interconnected voids.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: April 3, 2001
    Assignee: Pouvair Corporation
    Inventors: Gary R. Pickrell, Kenneth R. Butcher
  • Patent number: 5656541
    Abstract: The present invention relates to a solid low temperature phosphorus diffusion source that is an R.sub.2 O.sub.3 /P.sub.2 O.sub.5 compound in which the ratio of R.sub.2 O.sub.3 to P.sub.2 O.sub.5 is 1 to 5 and R is Nd, Eu, Pr, Sm, Ho, Tb, Er, Yb, Tm or Dy. The invention also relates to a method of making the diffusion source, a method of using the diffusion source to evolve P.sub.2 O.sub.5 to dope a silicon wafer, and the doped silicon wafer.
    Type: Grant
    Filed: July 5, 1995
    Date of Patent: August 12, 1997
    Assignee: Techneglas, Inc.
    Inventors: James E. Rapp, Gary R. Pickrell
  • Patent number: 5629234
    Abstract: The present invention relates to a solid high temperature phosphorus diffusion source that is an R.sub.2 O.sub.3 /P.sub.2 O.sub.5 compound in which the ratio of R.sub.2 O.sub.3 to P.sub.2 O.sub.5 is 1 to 3 and R is La, Y, Ce, Nd, Eu, Pr, Sm, Ho, Tb, Er, Yb, Tm or Dy. The invention also relates to a method of making the diffusion source, a method of using the diffusion source to evolve P.sub.2 O.sub.5 to dope a silicon wafer, and to the doped silicon wafer.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: May 13, 1997
    Assignee: Techneglas, Inc.
    Inventors: Gary R. Pickrell, James E. Rapp
  • Patent number: 5350460
    Abstract: The present invention relates to a solid high temperature phosphorus diffusion source that is an R.sub.2 O.sub.3 /P.sub.2 O.sub.5 compound in which the ratio of R.sub.2 O.sub.3 to P.sub.2 O.sub.5 is 1 to 3 and R is La, Y, Ce, Nd, Eu, Pt, Sm, Ho, Tb, Er, Yb, Tm or Dy. The invention also relates to a method of making the diffusion source, a method of using the diffusion source to evolve P.sub.2 O.sub.5 to dope a silicon wafer, and to the doped silicon wafer.
    Type: Grant
    Filed: December 8, 1992
    Date of Patent: September 27, 1994
    Assignee: Techneglas, Inc.
    Inventors: Gary R. Pickrell, James E. Rapp
  • Patent number: 5350461
    Abstract: The present invention relates to a solid low temperature phosphorus diffusion source that is an R.sub.2 O.sub.3 /P.sub.2 O.sub.5 compound in which the ratio of R.sub.2 O.sub.3 to P.sub.2 O.sub.5 is 1 to 5 and R is Nd, Eu, Pr, Sm, Ho, Tb, Er, Yb, Tm or Dy. The invention also relates to a method of making the diffusion source, a method of using the diffusion source to evolve P.sub.2 O.sub.5 to dope a silicon wafer, and the doped silicon wafer.
    Type: Grant
    Filed: December 8, 1992
    Date of Patent: September 27, 1994
    Assignee: Techneglas, Inc.
    Inventors: Gary R. Pickrell, James E. Rapp
  • Patent number: 4846902
    Abstract: A doping composition having a high rate of P.sub.2 O.sub.5 evolution as indicated by a thick deposited glassy film of about 1500-2000 angstroms at a doping temperature of only 900.degree. C. for one hour, the composition comprising a gadolinium oxide/P.sub.2 O.sub.5 compound.
    Type: Grant
    Filed: May 19, 1988
    Date of Patent: July 11, 1989
    Assignee: Owens-Illinois Television Products Inc.
    Inventor: Gary R. Pickrell