Patents by Inventor Gary S. Settles

Gary S. Settles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8113069
    Abstract: An aerodynamic sampler for sampling particles from a surface or a flowing gas stream is provided. The sampler can include an arcuate-shaped shroud having a first opening and a second opening, the first opening being directed in a first direction and the second opening oppositely disposed and spaced apart from the first opening. A gas nozzle having at least one gas outlet directed generally in the first direction can be included and may or may not be located at least partially within the shroud. The gas nozzle is operable to supply a gas jet to a surface that is proximate the first opening of the shroud. In addition, a suction device operable to pull or suck the gas proximate the first opening through the second opening and afford for the gas to enter a detector is provided. The arcuate-shaped shroud can be a bell-shaped shroud with the first opening located at a bottom of the bell-shape.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: February 14, 2012
    Assignee: The Penn State Research Foundation
    Inventor: Gary S. Settles
  • Publication number: 20080314166
    Abstract: An aerodynamic sampler for sampling particles from a surface or a flowing gas stream is provided. The sampler can include an arcuate-shaped shroud having a first opening and a second opening, the first opening being directed in a first direction and the second opening oppositely disposed and spaced apart from the first opening. A gas nozzle having at least one gas outlet directed generally in the first direction can be included and may or may not be located at least partially within the shroud. The gas nozzle is operable to supply a gas jet to a surface that is proximate the first opening of the shroud. In addition, a suction device operable to pull or suck the gas proximate the first opening through the second opening and afford for the gas to enter a detector is provided. The arcuate-shaped shroud can be a bell-shaped shroud with the first opening located at a bottom of the bell-shape.
    Type: Application
    Filed: June 17, 2008
    Publication date: December 25, 2008
    Applicant: The Penn State Research Foundation
    Inventor: Gary S. Settles
  • Patent number: 6171656
    Abstract: The present invention is an overspray collector and method of collecting overspray. The overspray collector provides a device and method to intercept overspray produced by spraying coating material onto any relatively-flat surface and preventing air pollution by capturing such pollution at its source. The overspray collector includes a shroud which surrounds and moves with the spraying device(s), while maintaining a gap between itself and the work surface being sprayed. Behind the spraying device and opposite the work surface, the shroud terminates in ducting through which overspray-laden air exits. Air inlet slots allow atmospheric air to enter in sufficient quantity to minimize residual airflow through the aforementioned gap. Internal to the shroud, the spray from the spray device(s) impinges upon the work surface and the finest sprayed particles turn laterally along the work surface without depositing thereupon, thus forming overspray.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: January 9, 2001
    Assignee: The Penn State Research Foundation
    Inventor: Gary S. Settles
  • Patent number: 6073499
    Abstract: A portal is provided for use with a detector for detecting trace amounts of contraband that may be retained on skin or clothing of the human subject. The portal relies upon the continuous process by which microscopic flakes of skin continuously separate from human subjects. The portal further relies upon the existence of a human thermal plume consisting of a layer of warm air adjacent the all human subject. The warm air rises in the cooler surrounding air and transports the microscopic flakes of skin upwardly. The portal capitalizes on this phenomenon by providing at least a partial enclosure with a funnel-shaped collector above the human subject. A low speed flow of relatively dense cool air may be introduced into the portal to buoyantly lift the warmer air of the human thermal plume upwardly. The air stream defined by the human thermal plume and the skin particles therein moves to a trap in the funnel-shaped collector above the portal.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: June 13, 2000
    Assignee: Penn State Research Foundation
    Inventor: Gary S. Settles
  • Patent number: 5975996
    Abstract: A nozzle for an abrasive blast cleaning apparatus consisting of a short, relatively rapidly converging inlet section, a constant-area throat, a rapidly diverging first diverging section, and a long second diverging section that diverges less rapidly than the first diverging section. The inlet section quickly accelerates the abrasive particles after entering the nozzle, while the first diverging section rapidly brings the relative velocity of the air stream and the abrasive particles to about Mach 1.4. The second diverging section helps to maintain the relative Mach number while the abrasive particles continue to accelerate. This makes abrasive blast cleaning more efficient, particularly because the kinetic energy of the abrasive particles emerging from the nozzle is significantly increased.
    Type: Grant
    Filed: July 17, 1997
    Date of Patent: November 2, 1999
    Assignee: The Penn State Research Foundation
    Inventor: Gary S. Settles
  • Patent number: 5785581
    Abstract: The specification discloses an apparatus and method for forming and projecting a continuous flow of frozen particles for the purpose of abrasive cleaning of substrate surfaces. The device utilizes a cryogenic fluid/dry air mixture that interacts with atomized water to form ice crystals. The crystals are projected through a blast nozzle to be directed at a substrate surface. The ice crystals, of a size range below one hundred micrometers, are produced within the apparatus just prior to the nozzle rather than being conveyed to the nozzle by a hose.
    Type: Grant
    Filed: October 17, 1996
    Date of Patent: July 28, 1998
    Assignee: The Penn State Research Foundation
    Inventor: Gary S. Settles