Patents by Inventor Gary Stewart Locke

Gary Stewart Locke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884534
    Abstract: Preloading a containment vessel with Low Vapor Pressure (LVP) liquid; partially evacuating the containment vessel to generate a vacuum in a headspace above the LVP liquid; and relieving material from a process vessel into the containment vessel during a process relief event in the process vessel. The containment vessel pressure may be equalized with ambient conditions prior to preloading the LVP liquid. The containment vessel size and quantity of LVP liquid may be determined to absorb the energy and mass of relieving fluids from the maximum anticipated relief scenario, permitting the gases to condense to liquid form to be recovered in liquid state instead of atmospherically venting or combusting the gases. The containment vessel headspace may be partially occupied with High Vapor Pressure (HVP) liquid comprising C5-C10 hydrocarbons configured to flash during the evacuation step to create and occupy a headspace, providing additional head space volume and heat rejection capacity.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: January 30, 2024
    Assignee: CARBOVATE DEVELOPMENT CORP.
    Inventors: Edward John Brost, Gary Stewart Locke
  • Patent number: 11859769
    Abstract: Configuring a high-vapor-pressure (HVP) material comprising a plurality of component hydrocarbons; flashing the HVP material from an HVP liquid to an HVP vapor as the HVP liquid is introduced into an evacuated portion of a containment vessel; introducing a relief mass from a process relief event occurring outside the containment vessel to mix with the HVP material in the containment vessel; and distributing energy from the process relief mass within the containment vessel using a plurality of energy absorption processes in the component hydrocarbons as the plurality of component hydrocarbons respectively condense to liquid phases over time. The evacuated portion of the containment vessel may be a headspace vacuum above a low-vapor-pressure (LVP) liquid within the containment vessel. The HVP material may comprise C4-C10 hydrocarbons. The HVP material may comprise a plurality of component hydrocarbons having diverse boiling points and vapor pressures, that absorb and distribute the relief mass energy.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: January 2, 2024
    Assignee: CARBOVATE DEVELOPMENT CORP.
    Inventors: Edward John Brost, Gary Stewart Locke
  • Patent number: 11852299
    Abstract: Preloading a containment vessel with Low Vapor Pressure (LVP) liquid; partially evacuating the containment vessel to generate a vacuum in a headspace above the LVP liquid; and relieving material from a process vessel into the containment vessel during a process relief event in the process vessel. The containment vessel pressure may be equalized with ambient conditions prior to preloading the LVP liquid. The containment vessel size and quantity of LVP liquid may be determined to absorb the energy and mass of relieving fluids from the maximum anticipated relief scenario, permitting the gases to condense to liquid form to be recovered in liquid state instead of atmospherically venting or combusting the gases. The containment vessel headspace may be partially occupied with High Vapor Pressure (HVP) liquid comprising C5-C10 hydrocarbons configured to flash during the evacuation step to create and occupy a headspace, providing additional head space volume and heat rejection capacity.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: December 26, 2023
    Assignee: CARBOVATE DEVELOPMENT CORP.
    Inventors: Edward John Brost, Gary Stewart Locke
  • Publication number: 20230265973
    Abstract: Preloading a containment vessel with Low Vapor Pressure (LVP) liquid; partially evacuating the containment vessel to generate a vacuum in a headspace above the LVP liquid; and relieving material from a process vessel into the containment vessel during a process relief event in the process vessel. The containment vessel pressure may be equalized with ambient conditions prior to preloading the LVP liquid. The containment vessel size and quantity of LVP liquid may be determined to absorb the energy and mass of relieving fluids from the maximum anticipated relief scenario, permitting the gases to condense to liquid form to be recovered in liquid state instead of atmospherically venting or combusting the gases. The containment vessel headspace may be partially occupied with High Vapor Pressure (HVP) liquid comprising C5-C10 hydrocarbons configured to flash during the evacuation step to create and occupy a headspace, providing additional head space volume and heat rejection capacity.
    Type: Application
    Filed: December 8, 2022
    Publication date: August 24, 2023
    Applicant: CARBOVATE DEVELOPMENT CORP.
    Inventors: Edward John Brost, Gary Stewart Locke
  • Publication number: 20230265974
    Abstract: Configuring a high-vapor-pressure (HVP) material comprising a plurality of component hydrocarbons; flashing the HVP material from an HVP liquid to an HVP vapor as the HVP liquid is introduced into an evacuated portion of a containment vessel; introducing a relief mass from a process relief event occurring outside the containment vessel to mix with the HVP material in the containment vessel; and distributing energy from the process relief mass within the containment vessel using a plurality of energy absorption processes in the component hydrocarbons as the plurality of component hydrocarbons respectively condense to liquid phases over time. The evacuated portion of the containment vessel may be a headspace vacuum above a low-vapor-pressure (LVP) liquid within the containment vessel. The HVP material may comprise C4-C10 hydrocarbons. The HVP material may comprise a plurality of component hydrocarbons having diverse boiling points and vapor pressures, that absorb and distribute the relief mass energy.
    Type: Application
    Filed: December 8, 2022
    Publication date: August 24, 2023
    Applicant: CARBOVATE DEVELOPMENT CORP.
    Inventors: Edward John Brost, Gary Stewart Locke
  • Publication number: 20230264942
    Abstract: Preloading a containment vessel with Low Vapor Pressure (LVP) liquid; partially evacuating the containment vessel to generate a vacuum in a headspace above the LVP liquid; and relieving material from a process vessel into the containment vessel during a process relief event in the process vessel. The containment vessel pressure may be equalized with ambient conditions prior to preloading the LVP liquid. The containment vessel size and quantity of LVP liquid may be determined to absorb the energy and mass of relieving fluids from the maximum anticipated relief scenario, permitting the gases to condense to liquid form to be recovered in liquid state instead of atmospherically venting or combusting the gases. The containment vessel headspace may be partially occupied with High Vapor Pressure (HVP) liquid comprising C5-C10 hydrocarbons configured to flash during the evacuation step to create and occupy a headspace, providing additional head space volume and heat rejection capacity.
    Type: Application
    Filed: December 8, 2022
    Publication date: August 24, 2023
    Applicant: CARBOVATE DEVELOPMENT CORP.
    Inventors: Edward John Brost, Gary Stewart Locke