Patents by Inventor Gary T. Boyd

Gary T. Boyd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140104871
    Abstract: Example light management films including a plurality of tapered protrusions are described. In some examples, the disclosure relates to a film comprising a reflective polarizer layer and a plurality of tapered protrusions disposed on and tapering away from the reflective polarizer layer, where the tapered protrusions include at least one of a plurality of substantially conical shaped protrusions or a plurality of pyramidal shaped protrusions including at least four side faces. The plurality of tapered protrusions may be configured to reduce the divergence of incident light and redirect a majority of incident light propagating along a first direction to a second direction different from the first direction.
    Type: Application
    Filed: May 14, 2012
    Publication date: April 17, 2014
    Inventors: Gary T. Boyd, Qingbing Wang
  • Patent number: 8690373
    Abstract: A directly illuminated display unit includes a display panel and one or more light sources disposed behind the display panel. The light sources are capable of producing illumination light. A diffusive light diverting layer is disposed between the one or more light sources and the display panel. The light diverting layer comprises first light diverting elements disposed on one of a first side of the light diverting layer facing display panel and second light diverting elements disposed on a second side of the light diverting layer facing away from the display panel. The diffusive light diverting layer further comprises diffusing particles disposed within a polymeric matrix.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: April 8, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Kenneth A. Epstein, Kenneth J. Hanley, Gary T. Boyd
  • Patent number: 8657472
    Abstract: A light redirecting film (100) includes a first major surface (110) that includes first microstructures (150) that extend along a first direction and a second major surface (120), which may form part of a matte layer, the second major surface being opposite to the first major surface and including second microstructures (160). The second major surface has an optical haze that is not greater than about 3% and an optical clarity that is not greater than about 85%. The light redirecting film has an average effective transmission that is not less than about 1.75. The light redirecting film (100) may comprise particles. The second microstructures may have a slope distribution.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: February 25, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph T. Aronson, Slah Jendoubi, Mitchell A. F. Johnson, Scott R. Kaytor, Tri D. Pham, Robert A. Yapel, Joseph A. Zigal, Steven J. McMan, Steven D. Solomonson, Steven H. Kong, Fei Lu, Gary T. Boyd
  • Publication number: 20130321910
    Abstract: A system for projecting content at an angle to a rear projection screen. The system includes a projector configured for projecting changeable electronic content and a rear projection screen for receiving the projected content at an angle and displaying the projected content. The rear projection screen includes a turning film having prisms facing toward or away from the projector. For prisms facing toward the projector, a protective film covers the turning film. When the projected content is displayed on the rear projection screen, the content has a substantially uniform appearance.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Inventors: Brian T. Weber, Rolf W. Biernath, John C. Schultz, Gary T. Boyd
  • Patent number: 8599483
    Abstract: A system for projecting content at an angle to a rear projection screen. The system includes a projector configured for projecting changeable electronic content and a rear projection screen for receiving the projected content at an angle and displaying the projected content. The rear projection screen includes a turning film having prisms facing toward or away from the projector. For prisms facing toward the projector, a protective film covers the turning film. When the projected content is displayed on the rear projection screen, the content has a substantially uniform appearance.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: December 3, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Brian T. Weber, Rolf W. Biernath, John C. Schultz, Gary T. Boyd
  • Publication number: 20130070341
    Abstract: Optical films for redirecting light are described, and optical systems, such as display systems, incorporating such optical films are described.
    Type: Application
    Filed: May 17, 2011
    Publication date: March 21, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert A. Yapel, Joseph T. Aronson, Matthew R.C. Atkinson, Gary T. Boyd, Slah Jendoubi, Mitchell A.F. Johnson, Scott R. Kaytor, Steven H. Kong, Fei Lu, Tri D. Pham, Robert B. Secor, Steven D. Solomonson
  • Publication number: 20130004728
    Abstract: Optical stack is disclosed. The optical stack includes a light redirecting film that includes a first structured major surface that includes a plurality of unitary discrete structures. The optical stack also includes an optical adhesive layer that is disposed on the light directing film. At least portions of at least some unitary discrete structures in the plurality of unitary discrete structures penetrate into the optical adhesive layer. At least portions of at least some unitary discrete structures in the plurality of unitary discrete structures do not penetrate into the optical adhesive layer. The peel strength of the light redirecting film and the optical adhesive layer is greater than about 30 grams/inch. The average effective transmission of the optical stack is not less or is less than by no more than about 10% as compared to an optical stack that has the same construction except that no unitary discrete structure penetrates into the optical adhesive layer.
    Type: Application
    Filed: April 11, 2011
    Publication date: January 3, 2013
    Inventors: Gary T. Boyd, William F. Edmonds, Vivian W. Jones, Keith M. Kotchick, Tri D. Pham, John F. Van Derlosfske III
  • Publication number: 20120268967
    Abstract: Lightguides are disclosed. More particularly, lightguides that include a lightguiding layer and a light extracting layer having a structured surface are disclosed. The light guiding layer is optically coupled to a first set of structures of the structured surface at given locations, and is not optically coupled to a second set of structures at given locations, thereby producing total internal reflection at the second locations. The selective optical coupling may be achieved by a number of different contemplated means as discussed herein. The lightguides allow for distribution of light along with redirection towards an image viewer without a number of commonly required optical elements in backlights.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 25, 2012
    Inventors: Qingbing Wang, Gary T. Boyd, Tri D. Pham, Robert Lee Erwin, David Scott Thompson
  • Publication number: 20120147593
    Abstract: Light redirecting film is disclosed. The light redirecting film includes a first major surface that includes a plurality of first microstructures that extend along a first direction. The light redirecting film also includes a second major surface that is opposite to the first major surface and includes a plurality of second microstructures. The second major surface has an optical haze that is in a range from about 4% to about 20% and an optical clarity that is in a range from about 20% to about 60%. The light redirecting film has an average effective transmission that is not less than about 1.55.
    Type: Application
    Filed: August 11, 2010
    Publication date: June 14, 2012
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert A. Yapel, Mitchell A.F. Johnson, Tri D. Pham, Joseph T. Aronson, Steven D. Solomonson, Scott R. Kaytor, Steven J. Mcman, Fei Lu, Steven H. Kong, Stah Jendoubi, Gary T. Boyd
  • Publication number: 20120140518
    Abstract: Flexible unitary lightguide and a method of making the same are disclosed. The lightguide includes a structured input side that includes a first pattern having smaller features superimposed on a second pattern having larger features. The lightguide further includes a structured top surface that includes a first region and a different second region. The first region includes a plurality of discrete light extractors for extracting light that propagates within the flexible unitary lightguide by total internal reflection. The second region includes a taper portion for directing light from the structured input side to the first region. The light extractors form a periodic array that has a first period along the length of the flexible unitary lightguide. The first period is such that substantially no visible moir fringes occur when the flexible unitary lightguide is used as a backlight in a pixelated display.
    Type: Application
    Filed: August 11, 2010
    Publication date: June 7, 2012
    Inventors: Jeffrey L. Solomon, Brian A. Kinder, Gary T. Boyd
  • Publication number: 20120113622
    Abstract: A light redirecting film (100) includes a first major surface (110) that includes first microstructures (150) that extend along a first direction and a second major surface (120), which may form part of a matte layer, the second major surface being opposite to the first major surface and including second microstructures (160). The second major surface has an optical haze that is not greater than about 3% and an optical clarity that is not greater than about 85%. The light redirecting film has an average effective transmission that is not less than about 1.75. The light redirecting film (100) may comprise particles. The second microstructures may have a slope distribution.
    Type: Application
    Filed: December 9, 2010
    Publication date: May 10, 2012
    Inventors: Joseph T. Aronson, Slah Jendoubi, Mitchell A. F. Johnson, Scott R. Kaytor, Tri D. Pham, Robert A. Yapel, Joseph A. Zigal, Steven J. McMan, Steven D. Solomonson, Steven H. Kong, Fei Lu, Gary T. Boyd
  • Publication number: 20120064296
    Abstract: The present invention concerns antiglare films having a microstructured surface.
    Type: Application
    Filed: May 28, 2010
    Publication date: March 15, 2012
    Inventors: Christopher B. Walker, JR., Christopher P. Tebow, Tri D. Pham, Steven H. Kong, Joseph T. Aronson, Kyle J. Lindstrom, Michael K. Gerlach, Michelle L. Toy, Taun L. McKenzie, Anthony M. Renstrom, Slah Jendoubi, Mitchell A.F. Johnson, Scott R. Kaytor, Robert A. Yapel, Joseph A. Zigal, Steven J. McMan, Steven D. Solomonson, Fei Lu, Gary T. Boyd
  • Patent number: 8096667
    Abstract: In one aspect, the invention provides a light control film having an indicium visible at a range of viewing angles. The light control film comprises a light input surface and a light output surface opposite the light input surface. The control film further comprises alternating transmissive and absorptive regions disposed between the light input surface and the light output surface. Each absorptive region has a height and a length, wherein the heights of the absorptive regions corresponding to the indicium are different that the heights of the absorptive regions that surround the absorptive regions corresponding to indicium.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: January 17, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Gary T. Boyd, Dale L. Ehnes, Tri D. Pham
  • Publication number: 20110310332
    Abstract: A backlight system includes an extended area light guide (120) and crossed first (128) and second (130) prismatic recycling films. The light guide provides a first light distribution that has a maximum luminance at a first polar angle, e.g., from 70 to 90 degrees, relative to the optical axis (116) of the system. The recycling films provide a second light distribution. No diffuser film is provided between the light guide and the recycling film disposed nearest the light guide. Instead, light is specularly transmitted from the output surface (120a) of the light guide to the input surface (128a) of the recycling film nearest the light guide. The recycling films comprise prisms having refractive indices tailored to provide the second light distribution with a maximum luminance at a polar angle of 10 degrees or less. The prisms preferably have a refractive index from 1.63 to 1.76. Related methods and articles are also disclosed.
    Type: Application
    Filed: February 2, 2010
    Publication date: December 22, 2011
    Inventors: Gary T. Boyd, Qingbing Wang
  • Publication number: 20110261584
    Abstract: A backlight includes a light source and one or more light recycling films. The light source generates light that exits the light source with an angular exit distribution. The light recycling films are oriented in relation to the light source so that the prism peaks of the recycling films are oriented away from the light source. The recycling films have a range of optimal incident angles that allow light to pass through the recycling films without recycling. The components of the light source, the characteristics of the recycling films, or both, are configured to control the overlap between the exit distribution of the light source and the optimal incident angle range of the recycling films.
    Type: Application
    Filed: June 20, 2008
    Publication date: October 27, 2011
    Inventors: Gary T. Boyd, Ji-Young Choi, John T. Cowher, Yasuyuki Daigo, Kenneth A. Epstein, Shandon D. Hart, Charles D. Hoyle, Min-Young Ji, Chideuk kim, Byung-Soo Ko, Keith M. Kotchick, Wade D. Kretman, David J. Lamb, Seo-Hern Lee, Eric W. Nelson, Youngsoo Park, Xianneng Peng, Yuji Saito, Naoya Taniguchi, John F. Van Derlofske, III, Leland R. Whitney, Kingpeng Yang, Yang Yu, Jie Zhou, Rui Zhang
  • Publication number: 20110032727
    Abstract: A back reflector for a lightguide in a turning film backlight includes a prism film layer in direct contact with a reflective layer. The lightguide includes a light guiding region having a refractive index that is substantially spatially uniform. The reflective layer may be specular or diffuse and may include a multilayer polymeric film.
    Type: Application
    Filed: December 3, 2008
    Publication date: February 10, 2011
    Inventors: Brian A. Kinder, Gary T. Boyd, Stephen K. Eckhardt, Chun-Yi Ting, Han-Lin Tung, Linda M. Rivard, Tao Liu
  • Publication number: 20110001901
    Abstract: A backlight subsystem includes first and second lightguides separated by an interfacial layer. The first lightguide has an output surface oriented toward an associated first illumination field, a back surface, and at least one light input edge. The second lightguide has output surface oriented toward an associated second illumination field, a back surface, and at least one light input edge. An interfacial layer is arranged between the back surfaces of the first lightguide and the second lightguide. The interfacial layer is substantially optically non-absorbing and may be predominately optically transmissive or predominately optically reflective.
    Type: Application
    Filed: December 3, 2008
    Publication date: January 6, 2011
    Inventors: Jeffrey L. Solomon, Gary T. Boyd, James W. Laumer, Brian A. Kinder, L. Peter Erickson
  • Publication number: 20100135004
    Abstract: A directly illuminated display unit includes a display panel and one or more light sources disposed behind the display panel. The light sources are capable of producing illumination light. A diffusive light diverting layer is disposed between the one or more light sources and the display panel. The light diverting layer comprises first light diverting elements disposed on one of a first side of the light diverting layer facing display panel and second light diverting elements disposed on a second side of the light diverting layer facing away from the display panel. The diffusive light diverting layer further comprises diffusing particles disposed within a polymeric matrix.
    Type: Application
    Filed: November 14, 2007
    Publication date: June 3, 2010
    Inventors: Kenneth A. Epstein, Kenneth J. Hanley, Gary T. Boyd
  • Publication number: 20090284836
    Abstract: In one aspect, the invention provides a light control film having an indicium visible at a range of viewing angles. The light control film comprises a light input surface and a light output surface opposite the light input surface. The control film further comprises alternating transmissive and absorptive regions disposed between the light input surface and the light output surface. Each absorptive region has a height and a length, wherein the heights of the absorptive regions corresponding to the indicium are different that the heights of the absorptive regions that surround the absorptive regions corresponding to indicium.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 19, 2009
    Inventors: Gary T. Boyd, Dale L. Ehnes, Tri D. Pham
  • Publication number: 20080247065
    Abstract: Methods for fabricating an optical film characterizable by a relationship between gain and thickness to prism pitch ratio (S/p) that varies cyclically are described. The thickness and the prism pitch of the optical film are selected based on the relationship between gain and S/p ratio, to obtain a desired gain. The optical film is formed having the S/p ratio that provides the desired gain.
    Type: Application
    Filed: April 6, 2007
    Publication date: October 9, 2008
    Inventors: Gary T. Boyd, Robert M. Emmons, Leland R. Whitney