Patents by Inventor Gary T. Jimmerson

Gary T. Jimmerson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7938004
    Abstract: Disclosed herein are systems and methods of angular rate and position measurement that combine a small footprint with hardening and isolation technologies that allow it to function in acceleration, angular rate, noise and vibration environments that cause other gyroscopes to either fail or to produce erroneous outputs. An example embodiment contains a triad of accelerometers, a triad of gyroscopes, analog and digital ancillary electronics and a processor housed within a housing which is also filled with vibration reducing encapsulating compound. The disclosed systems and methods of angular rate and position measurement are capable of measuring and correcting internal errors and perturbations caused by the longitudinal and angular accelerations and temperature excursions of aerospace vehicles, isolating the gyroscope elements from the effects of acoustic noise and vibration, and accurately measuring the relatively small pitch and yaw oscillations of the vehicle in its flight path trajectory.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: May 10, 2011
    Inventors: James P. Brunsch, Jr., David A. Bittle, Julian L. Cothran, Gary T. Jimmerson, Russell S. Garner
  • Patent number: 7552892
    Abstract: The Dual-Sliding Fin Lock Assembly provides a simple, cost-effective and secure locking mechanism that engages on the initial opening stroke of a fin of a flying object, using a minimal number of parts that are easy to manufacture. Two sliding locks, each having a protruding step, engage with two fin lugs each of which has a corresponding notch. When a step and a notch fit together, they form a contact plane which may be straight horizontal or inclined to ensure robust locking operation without the need for extremely tight tolerances on the individual parts or on the assembly. Since the sliding locks do not rotate around the pin that holds the fin lugs, they engage the fin lugs to arrest the rotation of the fin and retain it securely in the deployed position for the duration of the object's flight, guiding the object more accurately toward its destination.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 30, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: David A. Bittle, Gary T. Jimmerson, Julian L. Cothran
  • Patent number: 7416154
    Abstract: The Trajectory Correction Kit (TCK) is a completely self-contained retrofit kit that is externally and fixedly mounted as an add-on to the rear (aft of the tailfins) of an existing, unguided rocket. The TCK continuously measures the pitch and yaw of the rocket as it is released from the launch tube and during the initial seconds of the flight and calculates the trajectory correction that is necessary to eliminate the measured pitch and yaw. Then it activates selected thrusters among the thrusters that are positioned around the circumference of the rocket body so as to steer the rocket in a direction until the measured pitch and yaw are eliminated. This results in significant reductions in both the rocket flight path dispersion and collateral damage.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: August 26, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: David A. Bittle, Gary T. Jimmerson, Julian L. Cothran
  • Patent number: 7395761
    Abstract: The Variable-Force Payload Ejecting System, residing within an air vehicle, utilizes multiple pressure generators, one or more of which may be activated, to produce variable levels of force. A controlling computer within the air vehicle determines when and how much pressure needs to be generated to eject a given item, such as a submunition, from the vehicle. In its determination, the computer factors in the vehicle's forward velocity and height over the intended target at the time of ejection and the characteristics of the particular submunition to be ejected. An activating mechanism activates one or more pressure generators to produce the determined amount of pressure. The pressure thusly generated acts on an inflatable tube that inflates and expels the selected submunition. The result is a more precise delivery of the submunitions onto the intended targets.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: July 8, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: David A. Bittle, Gary T. Jimmerson, Julian L. Cothran
  • Patent number: 7261039
    Abstract: A KE rod warhead for artillery rockets contains a multiplicity of KE rod penetrators housed in trays and packaged into bays or tier packs that are stacked and positioned around a center column of the warhead. The warhead has a skin which is severed upon the rocket entering a target area. The KE rods are situated and housed in such a manner that upon release the rods experience a minimum of pitching or tumbling upon entering the air stream giving the rods an optimal lethality against a designated target. The KE rod artillery rocket contains no explosive munitions, so it can be used without civilian and environmental concerns over unexploded ordnance.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: August 28, 2007
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: David A Bittle, Gary T Jimmerson, Julian L Cothran, Donald H Blaise
  • Patent number: 7185846
    Abstract: Asymmetrical Control Surface System for Tube-Launched Air Vehicles places one control surface, such as a wing or a horizontal tail, above horizontal midplane axis of an air vehicle, such as a tube-launched missile, and the opposing control surface below the midplane axis. Such asymmetrical arrangement of the control surfaces increases the lift and maneuverability of the air vehicle during flight. For stowage inside the tube prior to launch, each control surface slides into its corresponding slot in the body of the vehicle, making the entire control system compact.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: March 6, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: David A. Bittle, Gary T. Jimmerson, Julian L. Cothran
  • Patent number: 6739548
    Abstract: The fin lock system overcomes the major problems associated with the current deployment and locking mechanism by adding a center boss to the fin between the rear and front bosses and a sliding lock that engages between the housing and the center boss. The sliding lock, having a very low mass, engages with the center boss, and thus with the fin, very quickly and reliably when the fin reaches its fully deployed position, thereby arresting the motion of the fin and preventing it from rebounding. This, in turn, allows the aft-housing lug to lock the fin in its deployed position with one opening motion of the fin. The additional boss provides greater resistance to inertial and aerodynamic loads while the sliding lock completely eliminates both over-rotation of the fin and inconsistent engagement of the fin lock.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: May 25, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: David A. Bittle, Russell S. Garner, Gary T. Jimmerson, Derek C. Jenkins
  • Patent number: 5762294
    Abstract: The wing deployment device is a simple mechanical device that resides in hollow of the wing and combines a primary and a secondary rotational motions to translate the wing from its stored position to its deployed position. The primary rotational motion occurs when the initial restraint holding the wing to the missile body is severed and the wing, under the influence of the spring component of the device, rotates to a position normal to the missile body axis. After the lapse of a pre-determined duration of time, the secondary rotational motion is started when the tensile force of the spring is transfered to the swivel component via the kevlar rope coupled between the spring and the swivel. As the kevlar rope that is wrapped around the cylindrical shaft component unwinds, the swivel rotates and transmits the rotational motion to the base component which is rigidly coupled to the wing and, in turn, imparts the motion to the wing, thereby engaging the wing in the secondary rotational motion to be deployed.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: June 9, 1998
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Gary T. Jimmerson