Patents by Inventor Gary T. Neel

Gary T. Neel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7117721
    Abstract: In combination, an instrument for determining a characteristic of a biological fluid or a control, and a cuvette for holding a sample of the biological fluid or control, the characteristic of which is to be determined. The instrument comprises a radiation-reflective surface, a first source for irradiating the surface, and a first detector for detecting radiation reflected from the surface. The cuvette has two opposed walls substantially transparent to the source radiation and reflected radiation. The first source and first detector are disposed adjacent a first one of the two opposed walls. The radiation reflective surface is disposed adjacent a second of the two opposed walls. A second source is provided for irradiating the surface. The first detector detects radiation from the second source reflected from the surface.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: October 10, 2006
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Gary T. Neel, James R. Parker, Rick L. Collins, David E. Storvick, Charles L. Thomeczek, Jr., William J. Murphy, George R. Lennert, Morris J. Young, Daniel L. Kennedy
  • Patent number: 6964871
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber or other testing zone, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the testing zone. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: November 15, 2005
    Assignee: Home Diagnostics, Inc.
    Inventors: Douglas E. Bell, Gary T. Neel, T. Philip Wong
  • Patent number: 6959247
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: October 25, 2005
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Allan Javier Caban, David K. Boehm
  • Patent number: 6953693
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: October 11, 2005
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong
  • Patent number: 6946299
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: September 20, 2005
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Houston F. Voss, Allan Javier Caban, David K. Boehm
  • Publication number: 20040182703
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber or other testing zone, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the testing zone. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: January 26, 2004
    Publication date: September 23, 2004
    Applicant: Home Diagnostics, Inc.
    Inventors: Douglas E. Bell, Gary T. Neel, T. Philip Wong
  • Publication number: 20040104131
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: November 12, 2003
    Publication date: June 3, 2004
    Applicant: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong
  • Patent number: 6743635
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: June 1, 2004
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Houston F. Voss
  • Publication number: 20040099540
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 27, 2004
    Applicant: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Allan Javier Caban, David K. Boehm
  • Publication number: 20040094432
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Applicant: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong
  • Publication number: 20040094433
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Applicant: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Houston F. Voss, Allan Javier Caban, David K. Boehm
  • Publication number: 20030203498
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: November 1, 2002
    Publication date: October 30, 2003
    Applicant: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Houston F. Voss, Allan Javier Caban, David K. Boehm
  • Publication number: 20030136183
    Abstract: In combination, an instrument for determining a characteristic of a biological fluid or a control, and a cuvette for holding a sample of the biological fluid or control, the characteristic of which is to be determined. The instrument comprises a radiation-reflective surface, a first source for irradiating the surface, and a first detector for detecting radiation reflected from the surface. The cuvette has two opposed walls substantially transparent to the source radiation and reflected radiation. The first source and first detector are disposed adjacent a first one of the two opposed walls. The radiation reflective surface is disposed adjacent a second of the two opposed walls. A second source is provided for irradiating the surface. The first detector detects radiation from the second source reflected from the surface.
    Type: Application
    Filed: February 4, 2003
    Publication date: July 24, 2003
    Inventors: Gary T. Neel, James R. Parker, Rick L. Collins, David E. Storvick, Charles L. Thomeczek, William J. Murphy, George R. Lennert, Morris J. Young, Daniel L. Kennedy
  • Patent number: 6575017
    Abstract: In combination, an instrument for determining a characteristic of a biological fluid or a control, and a cuvette for holding a sample of the biological fluid or control, the characteristic of which is to be determined. The instrument comprises a radiation-reflective surface, a first source for irradiating the surface, and a first detector for detecting radiation reflected from the surface. The cuvette has two opposed walls substantially transparent to the source radiation and reflected radiation. The first source and first detector are disposed adjacent a first one of the two opposed walls. The radiation reflective surface is disposed adjacent a second of the two opposed walls. A second source is provided for irradiating the surface. The first detector detects radiation from the second source reflected from the surface.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: June 10, 2003
    Assignee: Roche Diagnostics Corporation, Inc.
    Inventors: Gary T. Neel, James R. Parker, Rick L. Collins, David E. Storvick, Charles L. Thomeczek, Jr., William J. Murphy, George R. Lennert, Morris J. Young, Daniel L. Kennedy
  • Patent number: D506832
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: June 28, 2005
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Allan Javier Caban
  • Patent number: D507657
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: July 19, 2005
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Allan Javier Caban
  • Patent number: D512512
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: December 6, 2005
    Assignee: Wachovia Bank, National Association
    Inventors: Douglas E. Bell, Gary T. Neel, Houston F. Voss
  • Patent number: D495418
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: August 31, 2004
    Assignee: Home Diagnostics, Inc.
    Inventors: George R. Rounds, Allan Javier Caban, Gary T. Neel
  • Patent number: D496461
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: September 21, 2004
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Jeffrey A. Smith, Allan Javier Caban, David K. Boehm, Jonathan D. Payne
  • Patent number: D499100
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: November 30, 2004
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Allan Javier Caban, David K. Boehm