Patents by Inventor Gary W. Ferrell

Gary W. Ferrell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7645343
    Abstract: Systems and methods for promoting a substantially uniform cavitation field. With system (100) including a diaphragm (109) dividing a container (103), a second energy pulse corresponding to a first energy pulse arising from collapse of a cavity C is produced and is used to determine whether to adjust a corresponding transducer 121-k. In system (16), a cavity creating unit (11), including an assembly of transducers 15-i, is moveable from a test liquid to a particle removal (PR) liquid after transducer testing. In another system, a sensor plate (170) having an array of sensors 171-j provides a virtual wafer. A substantially uniform field of cavitation may be maintained by a cavity enhancement liquid, or adjustment of transducer energy. Mechanisms of holding an object produce substantially uniform cavitation. Opposed transducers in a container having monotonically decreasing and/or increasing cavitation density produce substantially uniform cavitation density.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: January 12, 2010
    Assignee: SEZ America, Inc.
    Inventors: Gary W. Ferrell, Frances Ferrell, legal representative, John F. Schipper, Jagjit S. Ratra
  • Patent number: 7181863
    Abstract: A wafer dryer and method featuring a nebulizer which emits a pressurized drying liquid stream that converges with an opposed pressurized non-reactive carrier gas stream to produce a drying liquid fog. The pressurized non-reactive gas spray device is disposed partially within a tub and partially within a wafer bath vessel housing a wafer to be dried. The tub has a vent port for allowing the drying liquid fog to pass into the wafer bath vessel to adhere to exposed wafer surfaces and displace remaining liquid on wafer surfaces, thus drying the wafer. The tub may further include a drain for draining drying liquid not converted into the fog or which has condensed. The vent also may include means for retaining larger drying liquid fog particles which allows smaller drying liquid fog particles to pass into the wafer bath vessel.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: February 27, 2007
    Assignee: SEZ America, Inc.
    Inventors: Gary W. Ferrell, Jagjit S. Ratra
  • Patent number: 7078340
    Abstract: Method and system for controllable deposit of copper onto an exposed surface of a workpiece, such as a semiconductor surface. A seed thickness of copper is optionally deposited onto the exposed surface, preferably using oxygen-free liquid ammonia to enhance this deposition. The workpiece exposed surface is then immersed in an electroplating solution, including copper and liquid ammonia at a suitable pressure and temperature, and copper is caused to plate onto the exposed surface at a controllable rate. When the copper deposited on the exposed surface reaches a selected total thickness, electroplating is discontinued, the electroplating solution is removed, and the gaseous and liquid ammonia are recovered and recycled for re-use.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: July 18, 2006
    Assignee: SEZ AG
    Inventor: Gary W. Ferrell
  • Patent number: 7057973
    Abstract: A method, probe, and system for detecting presence of cavitation in a fluid and measuring cavitation density and intensity of a specific locale in the fluid. A first cavitation void and associated energy perturbation, produced in a first fluid, moves within the first fluid and is received at a very thin plate, which separates the first fluid from a second fluid and is part of a light-proof chamber containing the second fluid. An energy perturbation in the first fluid is received at the thin plate and produces at least one cavitation void or associated energy perturbation in the second fluid; and the energy perturbation in the second fluid is eventually converted into an electromagnetic signal. This signal is received by a photomultiplier and converted to an electronic signal that indicates the presence of cavitation. The system can distinguish between cavitation voids produced at one location and/or time interval and voids produced at another location and/or another time interval.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: June 6, 2006
    Assignee: Sez AG
    Inventor: Gary W. Ferrell
  • Patent number: 6944097
    Abstract: A method, probe, and system for detecting presence of cavitation in a fluid and measuring cavitation density and intensity of a specific locale in the fluid. A first cavitation void and associated energy perturbation, produced in a first fluid, moves within the first fluid and is received at a very thin plate, which separates the first fluid from a second fluid and is part of a light-proof chamber containing the second fluid. An energy perturbation in the first fluid is received at the thin plate and produces at least one cavitation void or associated energy perturbation in the second fluid; and the energy perturbation in the second fluid is eventually converted into an electromagnetic signal. This signal is received by a photomultiplier and converted to an electronic signal that indicates the presence of cavitation. The system can distinguish between cavitation voids produced at one location and/or time interval and voids produced at another location and/or another time interval.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 13, 2005
    Assignee: Sez America, Inc.
    Inventor: Gary W. Ferrell
  • Publication number: 20010019888
    Abstract: Method and system for controllable deposit of copper onto an exposed surface of a workpiece, such as a semiconductor surface. A seed thickness of copper is optionally deposited onto the exposed surface, preferably using oxygen-free liquid ammonia to enhance this deposition. The workpiece exposed surface is then immersed in an electroplating solution, including copper and liquid ammonia at a suitable pressure and temperature, and copper is caused to plate onto the exposed surface at a controllable rate. When the copper deposited on the exposed surface reaches a selected total thickness, electroplating is discontinued, the electroplating solution is removed, and the gaseous and liquid ammonia are recovered and recycled for re-use.
    Type: Application
    Filed: January 29, 2001
    Publication date: September 6, 2001
    Inventor: Gary W. Ferrell
  • Patent number: 6270584
    Abstract: Method and apparatus for cleaning and/or drying objects that may have been wetted or contaminated in a manufacturing process. The objects are submerged in a rinse liquid in an enclosed chamber, and aerosol particles from a selected liquid are introduced into the chamber above the rinse liquid surface, forming a thin film on this surface. As the rinse liquid is slowly drained, some aerosol particles settle onto the exposed surfaces of the objects, and displace and remove rinse liquid residues from the exposed surfaces by a “chemical squeegeeing” effect. Surface contaminants are also removed by this process. Chamber pressure is maintained at or near the external environment pressure as the rinse liquid is drained from the chamber. Inert gas flow is employed to provide aerosol particles of smaller size and/or with greater dispersion within the chamber. Continuous filtering and shunt filtering are employed to remove most contaminants from the selected liquid.
    Type: Grant
    Filed: October 11, 1999
    Date of Patent: August 7, 2001
    Inventors: Gary W. Ferrell, Thomas D. Spencer, Rob E. Carter
  • Patent number: 6180524
    Abstract: Method and system for controllable deposit of copper onto an exposed surface of a workpiece, such as a semiconductor surface. A seed thickness of copper is optionally deposited onto the exposed surface, preferably using oxygen-free liquid ammonia to enhance this deposition. The workpiece exposed surface is then immersed in an electroplating solution, including copper and liquid ammonia at a suitable pressure and temperature, and copper is caused to plate onto the exposed surface at a controllable rate. When the copper deposited on the exposed surface reaches a selected total thickness, electroplating is discontinued, the electroplating solution is removed, and the gaseous and liquid ammonia are recovered and recycled for re-use.
    Type: Grant
    Filed: August 9, 1999
    Date of Patent: January 30, 2001
    Inventor: Gary W. Ferrell
  • Patent number: 6119366
    Abstract: Method and apparatus for drying and/or cleaning a workpiece, such as an electronic part, semiconductor wafer, printed circuit board or the like. As the workpiece is withdrawn from a processing liquid, a selected drying liquid, such as hydrofluoroether (HFE), ethylated HFE, an HFE azeotrope or an ethylated HFE azeotrope, that has a very small surface tension, is volatile, and has a density that is greater than the processing liquid density, is sprayed on, dribbled on or otherwise transferred to an exposed surface of the workpiece. The exposed surface may be stationary, may be rotating or may be moving along a selected path. The workpiece can be dried in 5-60 seconds, or less, in most situations and can be cleaned using the invention. Drying and/or cleaning can be performed in a single workpiece process, a single workpiece continuous process or a batch process.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: September 19, 2000
    Inventors: Gary W. Ferrell, Robert J. Elson, John F. Schipper
  • Patent number: 6036785
    Abstract: Method [and apparatus ] for quickly and controllably removing chemical residues and particle accumulations from an exposed surface of an object. A slurry, containing a slurry liquid and containing small scrubber particles that optionally have a range of at least two distinct particle sizes, is directed at the exposed surface to remove most or all of the residues and accumulations from the exposed surface. The slurry flow may be pulsed or be relatively constant. The exposed surface of the object is then partly or fully submerged in a rinse liquid that includes a strong base and/or a strong oxidizing agent. The rinse liquid is subjected to ultrasonic wave motion with a chosen wave displacement direction, and the ultrasonic waves have one or more distinct wavelengths, chosen to cover a range of expected sizes of chemical residues, particle accumulations and/or scrubber particles to be removed.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: March 14, 2000
    Inventor: Gary W. Ferrell
  • Patent number: 5974689
    Abstract: Method and apparatus for drying and/or cleaning a workpiece, such as an electronic part, semiconductor wafer, printed circuit board or the like. As the workpiece is withdrawn from a processing liquid, a selected drying liquid, such as hydrofluoroether (HFE) or an HFE azeotrope, that has a very small surface tension, is volatile, and has a density that is greater than the processing liquid density, is sprayed on, dribbled on or otherwise transferred to an exposed surface of the workpiece. The workpiece can be dried in 7-45 seconds, or less, in most situations and can be cleaned using the invention. Drying and/or cleaning can be performed in a single workpiece process, a single workpiece continuous process or a batch process.
    Type: Grant
    Filed: March 3, 1998
    Date of Patent: November 2, 1999
    Assignee: Gary W. Farrell
    Inventors: Gary W. Ferrell, Robert J. Elson, John F. Schipper
  • Patent number: 5968285
    Abstract: Methods for cleaning and/or drying objects that may have been wetted or contaminated in a manufacturing process. The objects are submerged in a rinse liquid in an enclosed chamber, and aerosol particles from a selected liquid are introduced into the chamber above the rinse liquid surface, forming a thin film on this surface. As the rinse liquid is slowly drained, some aerosol particles settle onto the exposed surfaces of the objects, and displace and remove rinse liquid residues from the exposed surfaces, possibly by a "chemical squeegeeing" effect. Surface contaminants are also removed by this process which may be performed at about room temperature. Chamber pressure is maintained at or near the external environment pressure as the rinse liquid is drained from the chamber. Inert gas flow is employed to provide aerosol particles of smaller size and/or with greater dispersion within the chamber. Continuous filtering and shunt filtering are employed to remove most contaminants from the selected liquid.
    Type: Grant
    Filed: June 4, 1998
    Date of Patent: October 19, 1999
    Assignee: Gary W. Ferrell
    Inventors: Gary W. Ferrell, Thomas D. Spencer, Rob E. Carter
  • Patent number: 5964958
    Abstract: Methods for drying and cleaning objects that may have been wetted or contaminated in a manufacturing process. The objects are submerged in a rinse liquid in an enclosed chamber, and aerosol particles from a selected liquid are introduced into the chamber above the rinse liquid surface, forming a thin film on this surface. As the rinse liquid is slowly drained, some aerosol particles settle onto the exposed surfaces of the objects, and displace and remove rinse liquid residues from the exposed surfaces, possibly by a "chemical squeegeeing" effect. Surface contarminants are also removed by this process, which may be carried out at or near room temperature. Chamber pressure is maintained at or near the external environment pressure as the rinse liquid is drained from the chamber.
    Type: Grant
    Filed: December 3, 1997
    Date of Patent: October 12, 1999
    Assignee: Gary W. Ferrell
    Inventors: Gary W. Ferrell, Thomas D. Spencer
  • Patent number: 5909741
    Abstract: Method and apparatus for processing a workpiece in a chemical bath liquid contained in a liquid container. The liquid container is fabricated from a material such as polyetheretherketone (PEEK), poly-amide-imide (PAI) or polyphenylene sulfide (PPS). A vibration generator is positioned on each of one or more container walls to introduce vibrations with a selected frequency (20-750 kHz) through the container wall(s) and into the chemical bath liquid. Two or more vibration generators may introduce vibrations with different frequencies into the chemical bath liquid and at different angles. The chemical bath liquid may be an acid such as HCl, H.sub.2 SO.sub.4, HNO.sub.3, H.sub.2 PO.sub.3 and HF, or may be an oxidizer or base such as NH.sub.4 OH and H.sub.2 O.sub.2. The chemical bath may be used to process semiconductor wafers and circuits, printed circuit boards, optical components and similar workpieces.
    Type: Grant
    Filed: June 20, 1997
    Date of Patent: June 8, 1999
    Inventor: Gary W. Ferrell
  • Patent number: 5685086
    Abstract: Method and apparatus for drying objects that may have been wetted in a manufacturing The objects are submerged in a rinse liquid in an enclosed chamber, and aerosol particles from a selected drying liquid are introduced into the chamber above the rinse liquid surface, forming a thin film on this surface. As the rinse liquid is slowly drained, some aerosol particles settle onto and form a film on the exposed surfaces of the objects, and displace and remove rinse liquid residues from the exposed surfaces. Surface contaminants are also removed by this process.
    Type: Grant
    Filed: March 14, 1996
    Date of Patent: November 11, 1997
    Inventor: Gary W. Ferrell
  • Patent number: 5653045
    Abstract: An apparatus and method for drying single or multiple parts or objects wherein the apparatus uses a drying chamber for containing said object or objects, said drying chamber having a closeable entryway for providing access to said drying chamber, the use of a sonic head disposed in said drying chamber attached to a source of drying liquid and an adjustable supply and drain attached to said drying chamber for introducing and removing said drying fluid to and from said drying chamber.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 5, 1997
    Inventor: Gary W. Ferrell
  • Patent number: 5505785
    Abstract: A method and apparatus for removing particle, metallic and organic contamination from the wafers used in fabricating integrated circuits is disclosed. In the preferred embodiment, the method comprises the step of placing the wafers to be processed in a vessel or container constructed of a very pure metal, and upon which a surface oxide will quickly form in air. The metal vessel or container is then filled with a cleaning solvent such as sulfuric acid, and are ultrasonically vibrated to remove the contamination. The ultrasonic vibration causes an acoustic streaming of the sulfuric acid, leading to a microflow of the solvent across the surface of the wafer at speeds on the order of several meters per second. This microflow provides for an quick and efficient cleaning of the wafer at reduced temperatures, thereby increasing the overall throughput of the planar fabrication process. The apparatus comprises a vessel or container constructed from a very pure metal, and containing an acidic cleaning solvent.
    Type: Grant
    Filed: July 18, 1994
    Date of Patent: April 9, 1996
    Inventor: Gary W. Ferrell
  • Patent number: 4539052
    Abstract: A composite cathode active material/current collector product useable as a component of a cathode for secondary batteries without the need for a separate current collector, which comprises a wire having a conductive interior portion of a transition metal and an exterior portion of an intercalatable layered transition metal chalcogenide, is made by a method which involves reacting a transition metal wire with a vapor of a chalcogen or a hydrogen chalcogenide.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: September 3, 1985
    Assignee: Combustion Engineering, Inc.
    Inventors: David N. Palmer, Gary W. Ferrell
  • Patent number: 4416915
    Abstract: A chalcogenide cathode is made by applying a slurry of a mixture containing at least one intercalatable layered transition metal chalcogenide cathode active material, a conductivity enhancing agent and a binding agent in a vehicle therefor to a high porosity current collector substrate which has been previously treated by applying and drying an adhesion promoting agent thereon and then heating the substrate in an inert atmosphere to drive off the vehicle and coalesce the binding agent.
    Type: Grant
    Filed: February 4, 1982
    Date of Patent: November 22, 1983
    Assignee: Combustion Engineering, Inc.
    Inventors: David N. Palmer, Gary W. Ferrell