Patents by Inventor Gary W. Knight
Gary W. Knight has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200315983Abstract: A tissue thickness compensator may generally comprise a compressible core comprising a plurality of movable particles, and a wrap surrounding the compressible core. The plurality of movable particles may comprise at least one medicament. A tissue thickness compensator may generally comprise a compressible core comprising a plurality of crushable particles, and a wrap surrounding the compressible core. The plurality of crushable particles may comprise at least one medicament. The compressible core may comprise a material selected from a group consisting of a biocompatible material. The wrap may comprise a material selected from a group consisting of a biocompatible material. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.Type: ApplicationFiled: April 17, 2020Publication date: October 8, 2020Inventors: Tamara Widenhouse, Frederick E. Shelton, IV, Gary W. Knight, Chester O. Baxter, III, Kreena R. Modi, Katherine J. Schmid
-
Patent number: 10779845Abstract: Various embodiments are direct to a surgical instrument comprising and end effector, an articulating shaft and an ultrasonic transducer assembly. The end effector may comprise an ultrasonic blade. The articulating shaft may extend proximally from the end effector along a longitudinal axis and may comprise a proximal shaft member and a distal shaft member pivotably coupled at an articulation joint. The ultrasonic transducer assembly may comprise an ultrasonic transducer acoustically coupled to the ultrasonic blade. The ultrasonic transducer assembly may be positioned distally from the articulation joint.Type: GrantFiled: May 15, 2017Date of Patent: September 22, 2020Assignee: Ethicon LLCInventors: Richard W. Timm, Timothy G. Dietz, Gary W. Knight
-
Publication number: 20200029962Abstract: Devices and methods are provided for stabilizing fasteners post-deployment. Devices and methods are also provided for facilitating ejection of surgical fasteners from a cartridge. Devices and methods are also provided for guiding surgical fasteners. Devices and methods are also provided for facilitating closing and clamping of an end effector of a surgical device. Devices and methods are also provided for securing fasteners and adjunct materials to tissue. Devices and methods are also provided for removably coupling a cartridge to an end effector of a surgical device. Devices and methods are also provided for locking a surgical device based on loading of a fastener cartridge in the surgical device. Devices and methods are provided for adjusting a tissue gap of an end effector of a surgical device. Devices and methods are also provided for manually retracting a drive shaft, drive beam, and associated components.Type: ApplicationFiled: October 3, 2019Publication date: January 30, 2020Inventors: Jerome R. Morgan, Frederick E. Shelton, IV, Emily A. Schellin, Jeffrey S. Swayze, Gary W. Knight, Brian F. Dinardo, Adam Dunki-Jacobs, Charles J. Scheib
-
Publication number: 20190380706Abstract: Devices and methods are provided for stabilizing fasteners post-deployment. Devices and methods are also provided for facilitating ejection of surgical fasteners from a cartridge. Devices and methods are also provided for guiding surgical fasteners. Devices and methods are also provided for facilitating closing and clamping of an end effector of a surgical device. Devices and methods are also provided for securing fasteners and adjunct materials to tissue. Devices and methods are also provided for removably coupling a cartridge to an end effector of a surgical device. Devices and methods are also provided for locking a surgical device based on loading of a fastener cartridge in the surgical device. Devices and methods are provided for adjusting a tissue gap of an end effector of a surgical device. Devices and methods are also provided for manually retracting a drive shaft, drive beam, and associated components.Type: ApplicationFiled: July 9, 2019Publication date: December 19, 2019Inventors: Jerome R. Morgan, Frederick E. Shelton, IV, Emily A. Schellin, Jeffrey S. Swayze, Gary W. Knight, Brian F. Dinardo, Adam R. Dunki-Jacobs, Charles J. Scheib
-
Patent number: 10470761Abstract: Devices and methods are provided for stabilizing fasteners post-deployment. Devices and methods are also provided for facilitating ejection of surgical fasteners from a cartridge. Devices and methods are also provided for guiding surgical fasteners. Devices and methods are also provided for facilitating closing and clamping of an end effector of a surgical device. Devices and methods are also provided for securing fasteners and adjunct materials to tissue. Devices and methods are also provided for removably coupling a cartridge to an end effector of a surgical device. Devices and methods are also provided for locking a surgical device based on loading of a fastener cartridge in the surgical device. Devices and methods are provided for adjusting a tissue gap of an end effector of a surgical device. Devices and methods are also provided for manually retracting a drive shaft, drive beam, and associated components.Type: GrantFiled: September 11, 2017Date of Patent: November 12, 2019Assignee: Ethicon LLCInventors: Jerome R. Morgan, Frederick E. Shelton, IV, Emily A. Schellin, Jeffrey S. Swayze, Gary W. Knight, Brian F. Dinardo, Adam R. Dunki-Jacobs, Charles J. Scheib
-
Publication number: 20190290267Abstract: A staple cartridge assembly comprising a tissue thickness compensator is disclosed. The tissue thickness compensator comprises a first fibrous, woven material and a second fibrous, woven material. The first fibrous, woven material comprises a density which is different than the density of the second fibrous, woven material. The tissue thickness compensator is configured to expand upon contact with a fluid in order to apply a compressive force to tissue captured within staples.Type: ApplicationFiled: June 7, 2019Publication date: September 26, 2019Inventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Charles J. Scheib, Christopher W. Widenhouse, William B. Weisenburgh, II, John L. Stammen, Mark H. Ransick, Stephanie A. Mutchler, Gary W. Knight, Michael S. Cropper, Sean P. Conlon, Jeffrey S. Swayze
-
Publication number: 20190133582Abstract: Force modulating tissue bridges, and associated applicators, kits and methods are provided. A force modulating tissue bridge can be a medical article for at least partially covering a wound and/or scar tissue. The medical article can include an elastic arch extending over an area, and a medial strut connected to the arch and extending into the area over which the central section extends.Type: ApplicationFiled: January 8, 2019Publication date: May 9, 2019Inventors: Felmont F. Eaves, David O. Kazmer, Gary W. Knight, Timothy G. Dietz, William Eugene Clem
-
Patent number: 10206680Abstract: Devices and methods are provided for guiding surgical fasteners. In general, the devices and methods can facilitate guidance of fasteners during deployment of the fasteners into tissue. In general, the surgical device can include one or more guidance features configured to facilitate guidance of the fasteners during ejection of the fasteners from the cartridge. The one or more guidance features can be configured to reduce lateral movement of the fasteners during deployment thereof. In an exemplary embodiment, each of the one or more guidance features can be configured to support a fastener on three sides thereof during deployment of the fastener. The one or more guidance features can be formed on the cartridge, e.g., formed on a surface thereof or formed on a sled disposed in the cartridge, and/or can be formed on a jaw that seats the cartridge.Type: GrantFiled: November 28, 2017Date of Patent: February 19, 2019Assignee: Ethicon LLCInventors: Emily A. Schellin, Jeffrey S. Swayze, Jerome R. Morgan, Frederick E. Shelton, IV, Gary W. Knight
-
Publication number: 20180368837Abstract: A surgical instrument. In one form, the surgical instrument includes a housing that has an interchangeable shaft assembly removably attached thereto. The interchangeable shaft assembly includes an elongate shaft that has a surgical end effector operably coupled thereto for selective articulation relative to the elongate shaft. An articulation system is configured to selectively apply articulation motions to the surgical end effector when the articulation system is in an actuated orientation. A locking arrangement prevents detachment of the interchangeable shaft assembly from the housing when the articulation system is in the actuated orientation.Type: ApplicationFiled: June 28, 2018Publication date: December 27, 2018Inventors: Jerome R. Morgan, Chester O. Baxter, III, Frederick E. Shelton, IV, Gary W. Knight
-
Patent number: 10123798Abstract: A tissue thickness compensator may generally comprise a first layer comprising a first biocompatible material sealingly enclosed in a water impermeable material and a second layer comprising a second biocompatible material comprising at least one encapsulation, wherein the first biocompatible material expands when contacted with a fluid. The tissue thickness compensator may comprise a haemostatic agent, an anti-inflammatory agent, an antibiotic agent, anti-microbial agent, an anti-adhesion agent, an anti-coagulant agent, a medicament, and/or pharmaceutically active agent. The encapsulation may comprise a biodegradable material to degrade in vivo and/or in situ. The tissue thickness compensator may comprise a hydrogel. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.Type: GrantFiled: March 28, 2012Date of Patent: November 13, 2018Assignee: Ethicon LLCInventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Charles J. Scheib, Christopher W. Widenhouse, William B. Weisenburgh, II, John L. Stammen, Mark H. Ransick, Stephanie A. Mutchler, Gary W. Knight, Michael S. Cropper, Sean P. Conlon, Jeffrey S. Swayze
-
Patent number: 10085748Abstract: A surgical instrument. In one form, the surgical instrument includes a housing that has an interchangeable shaft assembly removably attached thereto. The interchangeable shaft assembly includes an elongate shaft that has a surgical end effector operably coupled thereto for selective articulation relative to the elongate shaft. An articulation system is configured to selectively apply articulation motions to the surgical end effector when the articulation system is in an actuated orientation. A locking arrangement prevents detachment of the interchangeable shaft assembly from the housing when the articulation system is in the actuated orientation.Type: GrantFiled: December 18, 2014Date of Patent: October 2, 2018Assignee: Ethicon LLCInventors: Jerome R. Morgan, Chester O. Baxter, III, Frederick E. Shelton, IV, Gary W. Knight
-
Publication number: 20180078259Abstract: Devices and methods are provided for guiding surgical fasteners. In general, the devices and methods can facilitate guidance of fasteners during deployment of the fasteners into tissue. In general, the surgical device can include one or more guidance features configured to facilitate guidance of the fasteners during ejection of the fasteners from the cartridge. The one or more guidance features can be configured to reduce lateral movement of the fasteners during deployment thereof In an exemplary embodiment, each of the one or more guidance features can be configured to support a fastener on three sides thereof during deployment of the fastener. The one or more guidance features can be formed on the cartridge, e.g., formed on a surface thereof or formed on a sled disposed in the cartridge, and/or can be formed on a jaw that seats the cartridge.Type: ApplicationFiled: November 28, 2017Publication date: March 22, 2018Inventors: Emily A. Schellin, Jeffrey S. Swayze, Jerome R. Morgan, Frederick E. Shelton, IV, Gary W. Knight
-
Patent number: 9907554Abstract: Devices and methods are provided for stabilizing fasteners post-deployment. In general, the devices and methods can allow fasteners to resist counter rotation after being deployed. A fastener can be configured to resist counter rotation in a variety of ways. In some embodiments, a staple can include one or more anti-rotation mechanisms configured to resist counter rotation of the staple when the staple is deployed in tissue. In some embodiments, an orientation of a fastener relative to an orientation of one or more fasteners deployed adjacent thereto can be configured to help prevent counter rotation.Type: GrantFiled: September 2, 2014Date of Patent: March 6, 2018Assignee: Ethicon LLCInventors: Jerome R. Morgan, Frederick E. Shelton, IV, Emily A. Schellin, Jeffrey S. Swayze, Gary W. Knight
-
Patent number: 9877722Abstract: Devices and methods are provided for guiding surgical fasteners. In general, the devices and methods can facilitate guidance of fasteners during deployment of the fasteners into tissue. In general, the surgical device can include one or more guidance features configured to facilitate guidance of the fasteners during ejection of the fasteners from the cartridge. The one or more guidance features can be configured to reduce lateral movement of the fasteners during deployment thereof. In an exemplary embodiment, each of the one or more guidance features can be configured to support a fastener on three sides thereof during deployment of the fastener. The one or more guidance features can be formed on the cartridge, e.g., formed on a surface thereof or formed on a sled disposed in the cartridge, and/or can be formed on a jaw that seats the cartridge.Type: GrantFiled: September 2, 2014Date of Patent: January 30, 2018Assignee: Ethicon LLCInventors: Emily A. Schellin, Jeffrey S. Swayze, Jerome R. Morgan, Frederick E. Shelton, IV, Gary W. Knight
-
Publication number: 20180000479Abstract: Devices and methods are provided for stabilizing fasteners post-deployment. Devices and methods are also provided for facilitating ejection of surgical fasteners from a cartridge. Devices and methods are also provided for guiding surgical fasteners. Devices and methods are also provided for facilitating closing and clamping of an end effector of a surgical device. Devices and methods are also provided for securing fasteners and adjunct materials to tissue. Devices and methods are also provided for removably coupling a cartridge to an end effector of a surgical device. Devices and methods are also provided for locking a surgical device based on loading of a fastener cartridge in the surgical device. Devices and methods are provided for adjusting a tissue gap of an end effector of a surgical device. Devices and methods are also provided for manually retracting a drive shaft, drive beam, and associated components.Type: ApplicationFiled: September 11, 2017Publication date: January 4, 2018Inventors: Jerome R. Morgan, Frederick E. Shelton, IV, Emily A. Schellin, Jeffrey S. Swayze, Gary W. Knight, Brian F. Dinardo, Adam R. Dunki-Jacobs, Charles J. Scheib
-
Publication number: 20170367991Abstract: A tissue thickness compensator may generally comprise a compressible core comprising a plurality of movable particles, and a wrap surrounding the compressible core. The plurality of movable particles may comprise at least one medicament. A tissue thickness compensator may generally comprise a compressible core comprising a plurality of crushable particles, and a wrap surrounding the compressible core. The plurality of crushable particles may comprise at least one medicament. The compressible core may comprise a material selected from a group consisting of a biocompatible material. The wrap may comprise a material selected from a group consisting of a biocompatible material. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.Type: ApplicationFiled: April 6, 2017Publication date: December 28, 2017Inventors: Tamara Widenhouse, Frederick E. Shelton, IV, Gary W. Knight, Chester O. Baxter, III, Kreena R. Modi, Katherine J. Schmid
-
Patent number: 9844366Abstract: A surgical needle includes a pair of ends, a mid-region extending between the ends, and at least one grasping feature configured for grasping by a suturing instrument. An end of a suture is secured to the mid-region of the needle in a manner such that the end of the suture defines an oblique angle with at least part of the centerline defined by the mid-region of the needle. The end of the suture may be disposed in a hollow portion of the needle. The grasping feature may include a notch such as a scallop. The suture may be pivotally coupled with the needle via a ball or pin. The needle may have one or more sharp points. The sharp point may include three converging cutting edges, at least two planar surfaces bounded by the three cutting edges, and a rounded surface bounded by two of the three cutting edges.Type: GrantFiled: July 31, 2015Date of Patent: December 19, 2017Assignee: Ethicon Endo-Surgery, LLCInventors: James A. Woodard, Jr., Michael V. Sherrill, Jason R. Lesko, David T. Martin, Katherine J. Schmid, Michael J. Miller, Gary W. Knight, Richard F. Schwemberger, Atul M. Godbole
-
Patent number: 9833242Abstract: A two-part tissue thickness compensator assembly can include a first tissue thickness compensator configured to be positioned relative to an anvil of a surgical stapler, a second tissue thickness compensator configured to be positioned relative to a staple cartridge of the surgical stapler, and a hinge connecting the first tissue thickness compensator to the second tissue thickness compensator. The first and/or second tissue thickness compensators may include additional engagement features, such as a raised ridge that engages a slot in the anvil and/or the staple cartridge. In certain embodiments, the first and/or second tissue thickness compensators may include an encasement that contains a suitable biologic agent. An end effector assembly may be provided for attachment to a surgical instrument that includes, for example, a staple cartridge, an anvil, a first tissue thickness compensator positioned on the anvil, and a second tissue thickness compensator positioned on the staple cartridge.Type: GrantFiled: December 28, 2015Date of Patent: December 5, 2017Assignee: Ethicon Endo-Surgery, LLCInventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Katherine J. Schmid, Taylor W. Aronhalt, Gregory W. Johnson, John L. Stammen, Gary W. Knight, Christopher W. Widenhouse, William B. Weisenburgh, II, Stephanie A. Mutchler, Timothy S. Bedard
-
Patent number: D862695Type: GrantFiled: October 20, 2017Date of Patent: October 8, 2019Assignee: EMRGE, LLCInventors: Felmont F. Eaves, III, David O. Kazmer, Gary W. Knight, Timothy G. Dietz, William Eugene Clem
-
Patent number: D876641Type: GrantFiled: October 20, 2017Date of Patent: February 25, 2020Assignee: EMRGE, LLC.Inventors: Felmont F. Eaves, III, David O. Kazmer, Gary W. Knight, Timothy G. Dietz, William Eugene Clem