Patents by Inventor Gary W. Michalko

Gary W. Michalko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10877090
    Abstract: The terminals of a device under test are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane that includes a top contact plate facing the device under test, a bottom contact plate facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The top and bottom pins contact each other at an interface that is inclined with respect to the membrane surface normal. When compressed longitudinally, the pins translate toward each other by sliding along the interface. The sliding is largely longitudinal, with a small and desirable lateral component determined by the inclination of the interface.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: December 29, 2020
    Assignee: Johnstech International Corporation
    Inventors: John E. Nelson, Jeffrey C. Sherry, Patrick J. Alladio, Russell F. Oberg, Brian Warwick, Gary W. Michalko
  • Publication number: 20190302145
    Abstract: Terminals (2, 502) of a device under test (DUT) are connected to corresponding contact pads or leads by a series of electrically conductive contacts. Each terminal testing connects with both a “force” contact and a “sense” contact. In one embodiment, the sense contact (770) partially or completely laterally surrounds the force contact (700). In order to increase the contact surface, the force contact, in a spring pin (700) configuration contacts the device under test terminal at that portion of the lead which is curved or angled, rather than orthogonal to the pin.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 3, 2019
    Inventors: Joel N. Erdman, Jeffrey C. Sherry, Gary W. Michalko
  • Patent number: 10302675
    Abstract: The terminals of a device under test (DUT) are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane with a top facing the device under test, a bottom facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The bottom pins has a lower contact surface which includes an arcuate portion or ridge which increases contact pressure and ablates oxides by the rocking action of ridge when the DUT in inserted.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 28, 2019
    Assignee: Johnstech International Corporation
    Inventors: John E. Nelson, Jeffrey C. Sherry, Brian Warwick, Gary W. Michalko
  • Patent number: 10247755
    Abstract: Terminals (2, 502) of a device under test (DUT) are connected to corresponding contact pads or leads by a series of electrically conductive contacts. Each terminal testing connects with both a “force” contact and a “sense” contact. In one embodiment, the sense contact (770) partially or completely laterally surrounds the force contact (700). In order to increase the contact surface, the force contact, in a spring pin (700) configuration contacts the device under test terminal at that portion of the lead which is curved or angled, rather than orthogonal to the pin.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: April 2, 2019
    Assignee: Johnstech International Corporation
    Inventors: Joel N. Erdman, Jeffrey C. Sherry, Gary W. Michalko
  • Publication number: 20190004091
    Abstract: The terminals of a device under test (DUT) are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane with a top facing the device under test, a bottom facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The bottom pins has a lower contact surface which includes an arcuate portion or ridge which increases contact pressure and ablates oxides by the rocking action of ridge when the DUT in inserted.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 3, 2019
    Inventors: John E. Nelson, Jeffrey C. Sherry, Brian Warwick, Gary W. Michalko
  • Patent number: 10073117
    Abstract: The terminals of a device under test (DUT) are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane with a top facing the device under test, a bottom facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The bottom pins has a lower contact surface which includes an arcuate portion or ridge which increases contact pressure and ablates oxides by the rocking action of ridge when the DUT in inserted.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: September 11, 2018
    Assignee: Johnstech International Corporation
    Inventors: John E. Nelson, Jeffrey C. Sherry, Brian Warwick, Gary W. Michalko
  • Publication number: 20170315169
    Abstract: The terminals of a device under test are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane that includes a top contact plate facing the device under test, a bottom contact plate facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The top and bottom pins contact each other at an interface that is inclined with respect to the membrane surface normal. When compressed longitudinally, the pins translate toward each other by sliding along the interface. The sliding is largely longitudinal, with a small and desirable lateral component determined by the inclination of the interface.
    Type: Application
    Filed: July 19, 2017
    Publication date: November 2, 2017
    Inventors: John E. Nelson, Jeffrey C. Sherry, Patrick J. Alladio, Russell F. Oberg, Brian Warwick, Gary W. Michalko
  • Publication number: 20170276699
    Abstract: The terminals of a device under test (DUT) are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane with a top facing the device under test, a bottom facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The bottom pins has a lower contact surface which includes an arcuate portion or ridge which increases contact pressure and ablates oxides by the rocking action of ridge when the DUT in inserted.
    Type: Application
    Filed: June 12, 2017
    Publication date: September 28, 2017
    Inventors: John E. Nelson, Jeffrey C. Sherry, Brian Warwick, Gary W. Michalko
  • Patent number: 9678106
    Abstract: The terminals of a device under test (DUT) are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane with a top facing the device under test, a bottom facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The bottom pins has a lower contact surface which includes an arcuate portion or ridge which increases contact pressure and ablates oxides by the rocking action of ridge when the DUT in inserted.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: June 13, 2017
    Assignee: Johnstech International Corporation
    Inventors: John E. Nelson, Jeffrey C. Sherry, Brian Warwick, Gary W. Michalko
  • Publication number: 20160320429
    Abstract: Terminals (2, 502) of a device under test (DUT) are connected to corresponding contact pads or leads by a series of electrically conductive contacts. Each terminal testing connects with both a “force” contact and a “sense” contact. In one embodiment, the sense contact (770) partially or completely laterally surrounds the force contact (700). In order to increase the contact surface, the force contact, in a spring pin (700) configuration contacts the device under test terminal at that portion of the lead which is curved or angled, rather than orthogonal to the pin.
    Type: Application
    Filed: May 2, 2016
    Publication date: November 3, 2016
    Inventors: Joel N. Erdman, Jeffrey C. Sherry, Gary W. Michalko
  • Publication number: 20160209444
    Abstract: The terminals of a device under test (DUT) are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane with a top facing the device under test, a bottom facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The bottom pins has a lower contact surface which includes an arcuate portion or ridge which increases contact pressure and ablates oxides by the rocking action of ridge when the DUT in inserted.
    Type: Application
    Filed: March 28, 2016
    Publication date: July 21, 2016
    Inventors: John E. Nelson, Jeffrey C. Sherry, Brian Warwick, Gary W. Michalko
  • Patent number: 9329204
    Abstract: Terminals (2, 502) of a device under test (DUT) are connected to corresponding contact pads or leads by a series of electrically conductive contacts. Each terminal testing connects with both a “force” contact and a “sense” contact. In one embodiment, the sense contact (770) partially or completely laterally surrounds the force contact (700). In order to increase the contact surface, the force contact, in a spring pin (700) configuration contacts the device under test terminal at that portion of the lead which is curved or angled, rather than orthogonal to the pin.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 3, 2016
    Assignee: Johnstech International Corporation
    Inventors: Joel N. Erdman, Jeffrey C. Sherry, Gary W. Michalko
  • Patent number: 9297832
    Abstract: The terminals of a device under test (DUT) are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane with a top facing the device under test, a bottom facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The bottom pins has a lower contact surface which includes an arcuate portion or ridge which increases contact pressure and ablates oxides by the rocking action of ridge when the DUT in inserted.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: March 29, 2016
    Assignee: Johnstech International Corporation
    Inventors: John E. Nelson, Jeffrey C. Sherry, Brian Warwick, Gary W. Michalko
  • Publication number: 20150123689
    Abstract: The terminals of a device under test are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane that includes a top contact plate facing the device under test, a bottom contact plate facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The top and bottom pins contact each other at an interface that is inclined with respect to the membrane surface normal. When compressed longitudinally, the pins translate toward each other by sliding along the interface.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: John E. Nelson, Jeffrey C. Sherry, Patrick J. Alladio, Russell F. Oberg, Brian Warwick, Gary W. Michalko
  • Patent number: 9007082
    Abstract: The terminals of a device under test are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane that includes a top contact plate facing the device under test, a bottom contact plate facing the load board including a rocker base protrusion, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The top and bottom pins contact each other at an interface that is inclined with respect to the membrane surface normal. When compressed longitudinally, the pins translate toward each other by sliding along the interface. The sliding is largely longitudinal, with a small and desirable lateral component determined by the inclination of the interface.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: April 14, 2015
    Assignee: Johnstech International Corporation
    Inventors: John E. Nelson, Jeffrey C. Sherry, Patrick J. Alladio, Russell F. Oberg, Brian Warwick, Gary W. Michalko
  • Patent number: 8988090
    Abstract: Terminals (2, 502) of a device under test (DUT) are connected to corresponding contact pads or leads by a series of electrically conductive contacts. Each terminal testing connects with both a “force” contact and a “sense” contact. In one embodiment, the sense contact (770) partially or completely laterally surrounds the force contact (700). In order to increase the contact surface, the force contact, in a spring pin (700) configuration contacts the device under test terminal at that portion of the lead which is curved or angled, rather than orthogonal to the pin.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: March 24, 2015
    Assignee: Johnstech International Corporation
    Inventors: Joel N. Erdman, Jeffrey C. Sherry, Gary W. Michalko
  • Patent number: 8937484
    Abstract: The terminals of a device under test are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane that includes a top contact plate facing the device under test, a bottom contact plate facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The top and bottom pins contact each other at an interface that is inclined with respect to the membrane surface normal. When compressed longitudinally, the pins translate toward each other by sliding along the interface. The sliding is largely longitudinal, with a small and desirable lateral component determined by the inclination of the interface.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: January 20, 2015
    Assignee: Johnstech International Corporation
    Inventors: John E. Nelson, Jeffrey C. Sherry, Patrick J. Alladio, Russell F. Oberg, Brian Warwick, Gary W. Michalko
  • Publication number: 20140266279
    Abstract: The terminals of a device under test (DUT) are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane with a top facing the device under test, a bottom facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The bottom pins has a lower contact surface which includes an arcuate portion or ridge which increases contact pressure and ablates oxides by the rocking action of ridge when the DUT in inserted.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Applicant: Johnstech International Corporation
    Inventors: John E. Nelson, Jeffrey C. Sherry, Brian Warwick, Gary W. Michalko
  • Publication number: 20140103949
    Abstract: Terminals of a device under test are connected to corresponding contact pads or leads by a series of electrically conductive contacts. Each terminal testing connects with both a “force” contact and a “sense” contact. In one embodiment, the sense contact partially or completely laterally surrounds the force contact, so that it need not have its own resiliency. The sense contact has a forked end with prongs that extend to opposite sides of the force contact. Alternatively, the sense contact surrounds the force contact and slides laterally to match a lateral translation component of a lateral cross-section of the force contact during longitudinal compression of the force contact. Alternatively, the sense contact includes rods that have ends on opposite sides of the force contact, and extend parallel.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 17, 2014
    Inventors: Joel N. Erdman, Jeffrey C. Sherry, Gary W. Michalko
  • Publication number: 20130271176
    Abstract: The terminals of a device under test are temporarily electrically connected to corresponding contact pads on a load board by a series of electrically conductive pin pairs. The pin pairs are held in place by an interposer membrane that includes a top contact plate facing the device under test, a bottom contact plate facing the load board, and a vertically resilient, non-conductive member between the top and bottom contact plates. Each pin pair includes a top and bottom pin, which extend beyond the top and bottom contact plates, respectively, toward the device under test and the load board, respectively. The top and bottom pins contact each other at an interface that is inclined with respect to the membrane surface normal. When compressed longitudinally, the pins translate toward each other by sliding along the interface. The sliding is largely longitudinal, with a small and desirable lateral component determined by the inclination of the interface.
    Type: Application
    Filed: June 13, 2013
    Publication date: October 17, 2013
    Inventors: John E. Nelson, Jeffrey C. Sherry, Patrick J. Alladio, Russell F. Oberg, Brian Warwick, Gary W. Michalko