Patents by Inventor Gary W Ray

Gary W Ray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6759724
    Abstract: An image sensor. The image sensor array includes a substrate. An interconnect structure is formed adjacent to the substrate. An amorphous silicon electrode layer is adjacent to the interconnect structure. The amorphous silicon electrode layer includes electrode ion implantation regions between pixel electrode regions. The pixel electrode regions define cathodes of an array of image sensors. The electrode ion implantation regions provide physical isolation between the pixel electrode regions. The cathodes are electrically connected to the interconnect structure. An amorphous silicon I-layer is adjacent to the amorphous silicon electrode layer. The amorphous silicon I-layer forms an inner layer of each of the image sensors. A transparent electrode layer is formed adjacent to the image sensors. An inner surface of the transparent electrode is electrically connected to anodes of the image sensors and the interconnect structure.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: July 6, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Min Cao, Jeremy A. Theil, Gary W. Ray, Dietrich W. Vook
  • Patent number: 6586812
    Abstract: An array of image sensors that includes ion implantation regions that provide physical isolation between the pixel electrode regions. The physical isolation reduces coupling and cross-talk between the image sensors. The array of isolated image sensors can be formed by a simple fabrication process.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: July 1, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Min Cao, Jeremy A. Theil, Gary W. Ray, Dietrich W. Vook
  • Publication number: 20030107100
    Abstract: An image sensor. The image sensor array includes a substrate. An interconnect structure is formed adjacent to the substrate. An amorphous silicon electrode layer is adjacent to the interconnect structure. The amorphous silicon electrode layer includes electrode ion implantation regions between pixel electrode regions. The pixel electrode regions define cathodes of an array of image sensors. The electrode ion implantation regions provide physical isolation between the pixel electrode regions. The cathodes are electrically connected to the interconnect structure. An amorphous silicon I-layer is adjacent to the amorphous silicon electrode layer. The amorphous silicon I-layer forms an inner layer of each of the image sensors. A transparent electrode layer is formed adjacent to the image sensors. An inner surface of the transparent electrode is electrically connected to anodes of the image sensors and the interconnect structure.
    Type: Application
    Filed: January 22, 2003
    Publication date: June 12, 2003
    Inventors: Min Cao, Jeremy A. Theil, Gary W. Ray, Dietrich W. Vook
  • Patent number: 6396118
    Abstract: An array of active pixel sensors includes a substrate. An interconnect structure is formed adjacent to the substrate. The interconnect structure includes a plurality of conductive vias. A plurality of photo sensors are formed adjacent to the interconnect structure. Each photo sensor includes a pixel electrode. Each pixel electrode is electrically connected to the substrate through a corresponding conductive yet. A I-layer is formed over each of the pixel electrodes. The array of active pixel sensors further includes a conductive mesh formed adjacent to the photo sensors. An inner surface of the conductive mesh is electrically and physically connected to the photo sensors, and electrically connected to the substrate through a conductive via. The conductive mesh providing light shielding between photo sensors thereby reducing cross-talk between the photo sensors. The conductive mesh includes apertures that align with at least one of the pixel electrodes of the photo sensors.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: May 28, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: Jeremy A. Theil, Jane Mei-Jech Lin, Min Cao, Gary W. Ray, Shawming Ma, Xin Sun
  • Patent number: 6387736
    Abstract: A structure and a method for providing structural stability at an interface between two poorly adhering layers in a semiconductor device involve providing anchoring channels in one of the poorly adhering layers through which the other poorly adhering layer can be anchored to a third layer. Specifically, the structure and method are applicable to a three-layer stack having a top layer of amorphous silicon, a middle layer of titanium nitride, and a bottom layer of oxide. In order to reduce susceptibility to delamination between the amorphous silicon layer and the titanium nitride layer, the anchoring channels are created in the titanium nitride layer to allow the amorphous silicon to attach to the oxide layer. Because the amorphous silicon layer and the oxide layer exhibit good adhesion between each other, delamination between the amorphous silicon layer and the titanium nitride layer is minimized.
    Type: Grant
    Filed: April 26, 1999
    Date of Patent: May 14, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: Min Cao, Jeremy A Theil, Gary W Ray, Dietrich W Vook
  • Patent number: 6281535
    Abstract: A capacitor structure or an array of capacitors and a method of fabricating the structure utilize the contours of a cavity created in a layer stack to form two three-dimensional electrode plates. The three-dimensional electrode plates reduce the lateral size of the capacitor structure. The fabrication of the capacitor structure is compatible to conventional CMOS processing technology, in which the resulting capacitor structure may become embedded in a CMOS device. As an example, the capacitor structure may be fabricated along with a MOS transistor to produce a one-transistor-one-capacitor nonvolatile memory cell. Preferably, the three-dimensional electrode plates are made of platinum (Pt) or iridium (Ir) and the capacitor dielectric is a ferrous-electric material, such as lead-zirconate-titanate (PZT) or barium-strontium-titanate (BST).
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: August 28, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Shawming Ma, Gary W. Ray, Florence Eschbach
  • Publication number: 20010006846
    Abstract: A structure and a method for providing structural stability at an interface between two poorly adhering layers in a semiconductor device involve providing anchoring channels in one of the poorly adhering layers through which the other poorly adhering layer can be anchored to a third layer. Specifically, the structure and method are applicable to a three-layer stack having a top layer of amorphous silicon, a middle layer of titanium nitride, and a bottom layer of oxide. In order to reduce susceptibility to delamination between the amorphous silicon layer and the titanium nitride layer, the anchoring channels are created in the titanium nitride layer to allow the amorphous silicon to attach to the oxide layer. Because the amorphous silicon layer and the oxide layer exhibit good adhesion between each other, delamination between the amorphous silicon layer and the titanium nitride layer is minimized.
    Type: Application
    Filed: February 23, 2001
    Publication date: July 5, 2001
    Inventors: Min Cao, Jeremy A. Theil, Gary W. Ray, Dietrich W. Vook
  • Patent number: 6215164
    Abstract: An image pixel sensor array. The image pixel sensor array includes a substrate. An interconnect structure is formed adjacent to the substrate. A plurality of image pixel sensors are formed adjacent to the interconnect structure. Each image pixel sensor includes a pixel electrode, and an I-layer formed adjacent to the pixel electrode. The I-layer includes a first surface adjacent to the pixel electrode, and a second surface opposite the first surface. The first surface includes a first surface area which is less than a second surface area of the second surface. The image pixel sensor array further includes an insulating material between each image pixel sensor, and a transparent electrode formed over the image pixel sensors. The transparent electrode electrically connects the image pixel sensors and the interconnect structure.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: April 10, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Min Cao, Jeremy A Theil, Gary W Ray, Dietrich W Vook, Shawming Ma
  • Patent number: 6114739
    Abstract: An active pixel sensor. The active pixel sensor includes a substrate, an interconnect structure adjacent to the substrate, and at least one photo sensor adjacent to the interconnect structure. At least one photo sensor is formed adjacent to the interconnect structure. Each photo sensor includes a pixel electrode which includes a patterned doped semiconductor layer. An I-layer is formed adjacent to the patterned doped semiconductor layer. A transparent electrode is formed adjacent to the I-layer. A method of forming the active pixel sensor includes forming an interconnect structure over a substrate. Next, a doped semiconductor layer is deposited over the interconnect structure. The doped semiconductor layer is etched forming pixel electrode. An I-layer is deposited over the pixel electrodes. Finally, a transparent conductive layer is deposited over the I-layer.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: September 5, 2000
    Assignee: Agilent Technologies
    Inventors: Jeremy A. Theil, Min Cao, Dietrich W. Vook, Frederick A. Perner, Xin Sun, Shawming Ma, Gary W. Ray, Wayne M. Greene, Kit M. Cham, Steven A. Lupi
  • Patent number: 6083572
    Abstract: A method of forming a low-dielectric constant film on a substrate. The method includes placing the substrate within a plasma processing chamber. Gas within the chamber is removed. A combination of hydrocarbon and hydrofluorocarbon gasses are flowed into the chamber. A high density plasma is created in the chamber. The high density plasma is extinguished. Finally, all gas is removed from the chamber. The method can additionally include a heating step after the film has been formed.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: July 4, 2000
    Assignee: Hewlett-Packard Company
    Inventors: Jeremy A. Theil, Gary W. Ray, Karen L. Seaward, Francoise F. Mertz
  • Patent number: 6051867
    Abstract: An integrated circuit sensor structure. The integrated circuit sensor structure includes a substrate which includes electronic circuitry. An interconnect structure is adjacent to the substrate. The interconnect structure includes conductive interconnect vias which pass through the interconnect structure. A dielectric layer is adjacent to the interconnect structure. The dielectric layer includes a planar surface, and conductive dielectric vias which pass through the dielectric layer and are electrically connected to the interconnect vias. The dielectric layer further includes an interlayer planarization dielectric layer adjacent to the interconnect structure, and a passivating layer adjacent to the interlayer planarization dielectric layer. The integrated circuit sensor structure further includes sensors adjacent to the dielectric layer. The interconnect vias and the dielectric vias electrically connect the electronic circuitry to the sensors.
    Type: Grant
    Filed: May 6, 1999
    Date of Patent: April 18, 2000
    Assignee: Hewlett-Packard Company
    Inventors: Jeremy A. Theil, Gary W. Ray, Frederick A. Perner, Min Cao
  • Patent number: 6018187
    Abstract: An active pixel sensor. The active pixel sensor includes a substrate, an interconnect structure adjacent to the substrate, and at least one photo sensor adjacent to the interconnect structure. Each photo sensor includes an individual pixel electrode. An I-layer is formed over all of the pixel electrodes. A transparent electrode is formed over the I-layer. An inner surface of the transparent electrode is electrically connected to the I-layer and the interconnect structure.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: January 25, 2000
    Assignee: Hewlett-Packard Cmpany
    Inventors: Jeremy A. Theil, Min Cao, Dietrich W. Vook, Frederick A. Perner, Xin Sun, Shawming Ma, Gary W. Ray
  • Patent number: 6016011
    Abstract: A dual-inlaid damascene contact having a polished surface for directly communicating an electrically conductive layer to a semiconductor layer. A dielectric layer is formed on the electrically conductive layer. A dual-inlaid cavity is formed by etching a via cavity and a contact cavity into the dielectric layer. A damascene contact is formed by depositing tungsten into the dual-inlaid cavity. Chemical-mechanical polishing is used to planarize and smooth a surface of the damascene contact until the surface is coplanar with the dielectric layer. A semiconductor layer is then deposited on the damascene contact. The semiconductor layer can be the node of an amorphous silicon P-I-N photodiode. Electrical interconnection between the node of the photodiode and the electrically conductive layer is accomplished without using an intermediate electrode, and the smooth damascene contact improves surface adhesion, reduces contact resistance, and provides a discrete connection to the semiconductor layer.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: January 18, 2000
    Assignee: Hewlett-Packard Company
    Inventors: Min Cao, Jeremy A Theil, Gary W Ray, Dietrich W Vook
  • Patent number: 5342808
    Abstract: A method for reduction and control of the size of etched apertures and vias for integrated circuit devices. A first aperture having a horizontal dimension greater than a desired aperture dimension is etched in an insulating layer. The sidewalls and bottom surface of the first aperture are then lined with a conformal material such as ozone/TEOS or silicon nitride, and the conformal material is anistropically etched. The anisotropic etch removes the conformal material from the bottom surface, but leaves an amount of conformal material on the sidewalls to reduce the horizontal dimension to the desired aperture dimension. Where ozone/TEOS is used, the conformal layer may be formed at relatively low temperatures such as T=390.degree. C.
    Type: Grant
    Filed: March 9, 1993
    Date of Patent: August 30, 1994
    Assignee: Hewlett-Packard Company
    Inventors: Kristen Brigham, Gary W. Ray
  • Patent number: 5200360
    Abstract: A method of forming a plug for electrical connection between two metallic layers on an integrated circuit substrate includes retaining an antinucleation resist layer atop an insulator layer through which the plug is to be formed. After a contact hole is etched through the insulator layer, the antinucleation resist layer is baked. Cleaning of an area exposed by said contact hole in order to minimize contact resistance occurs during a two step process of argon sputter etching and oxygen plasma descumming the exposed area. Because the argon sputter etch and the oxygen plasma descum uncover an annular region about the contact hole, a concentration of phosphorous within the insulator layer and a low temperature selective deposition are used to reduce the occurrence of unwanted nucleation. After selective deposition, the antinucleation resist layer is stripped and an upper metallic layer is formed.
    Type: Grant
    Filed: November 12, 1991
    Date of Patent: April 6, 1993
    Assignee: Hewlett-Packard Company
    Inventors: Donald R. Bradbury, Gary W. Ray