Patents by Inventor Gary W. Skeels

Gary W. Skeels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5744673
    Abstract: The present invention relates to a zeolite beta catalyst characterized by critical limits of weak and strong acid species and exceptionally high catalytic activity. The catalyst is activated at a temperature effective to substantially reduce the concentration of strong acid species, i.e., hydronium cations, without substantially reducing the concentration of weak acid species, i.e., hydroxoaluminum cations, preferably following a calcining step wherein a synthesized zeolite beta catalyst containing a templating agent is calcined at a temperature in the range of from about 200.degree. to 1000.degree. C. in order to remove a substantial portion of the catalyst templating agent and an ion-exchanging step wherein the calcined catalyst is ion-exchanged with a salt solution containing at least one hydrogen forming cation selected from NH.sub.4.sup.+ and quaternary ammonium.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: April 28, 1998
    Assignee: UOP
    Inventors: Gary W. Skeels, Edith M. Flanigen
  • Patent number: 5659099
    Abstract: The present invention relates to a zeolite beta catalyst characterized by critical limits of weak and strong acid species and exceptionally high catalytic activity. The catalyst is activated at a temperature effective to substantially reduce the concentration of strong acid species, i.e., hydronium cations, without substantially reducing the concentration of weak acid species, i.e., hydroxoaluminum cations, preferably following a calcining step wherein a synthesized zeolite beta catalyst containing a templating agent is calcined at a temperature in the range of from about 200.degree. to 1000.degree. C. in order to remove a substantial portion of the catalyst templating agent and an ion-exchanging step wherein the calcined catalyst is ion-exchanged with a salt solution containing at least one hydrogen forming cation selected from NH.sub.4.sup.+ and quaternary ammonium.
    Type: Grant
    Filed: February 28, 1995
    Date of Patent: August 19, 1997
    Assignee: UOP
    Inventors: Gary W. Skeels, Edith M. Flanigen
  • Patent number: 5518708
    Abstract: Molecular sieve compositions are prepared by extracting aluminum and substituting chromium and/or tin for extracted aluminum to give molecular sieve products containing framework chromium and/or tin atoms. The process of preparing the chromium and/or tin-containing molecular sieves involves contacting a starting molecular sieve with a solution or slurry of at least one of a fluoro salt of chromium or a fluoro salt of tin under effective process conditions to provide for aluminum extraction and substitution of chromium and/or tin.
    Type: Grant
    Filed: November 8, 1994
    Date of Patent: May 21, 1996
    Assignee: UOP
    Inventors: Gary W. Skeels, Diane M. Chapman, Edith M. Flanigen
  • Patent number: 5401488
    Abstract: Molecular sieve compositions are prepared by extracting aluminum and substituting chromium and/or tin for extracted aluminum to give molecular sieve products containing framework chromium and/or tin atoms. The process of preparing the chromium and/or tin-containing molecular sieves involves contacting a starting molecular sieve with a solution or slurry of at least one of a fluoro salt of chromium or a fluoro salt of tin under effective process conditions to provide for aluminum extraction and substitution of chromium and/or tin.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: March 28, 1995
    Assignee: UOP
    Inventors: Gary W. Skeels, Diane M. Chapman, Edith M. Flanigen
  • Patent number: 5393718
    Abstract: The present invention relates to a zeolite beta catalyst characterized by critical limits of weak and strong acid species and exceptionally high catalytic activity. The catalyst is activated at a temperature effective to substantially reduce the concentration of strong acid species, i.e., hydronium cations, without substantially reducing the concentration of weak acid species, i.e., hydroxoaluminum cations, preferably following a calcining step wherein a synthesized zeolite beta catalyst containing a templating agent is calcined at a temperature in the range of from about 200.degree. to 1000.degree. C. in order to remove a substantial portion of the catalyst templating agent and an ion-exchanging step wherein the calcined catalyst is ion-exchanged with a salt solution containing at least one hydrogen forming cation selected from NH.sub.4.sup.+ and quaternary ammonium. Conversion processes utilizing the catalyst of the invention also are disclosed.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: February 28, 1995
    Assignee: UOP
    Inventors: Gary W. Skeels, Edith M. Flanigen
  • Patent number: 5366616
    Abstract: This invention relates to hydrocarbon conversion processes using novel molecular sieve compositions as the catalyst. These molecular sieves contain chromium in the framework structure along with aluminum and silicon. The process of preparing the chromium-containing molecular sieves involves contacting a starting molecular sieve with a solution or slurry of a fluoro salt of chromium under effective process conditions to provide for aluminum extraction and substitution of chromium.
    Type: Grant
    Filed: November 24, 1992
    Date of Patent: November 22, 1994
    Assignee: UOP
    Inventors: Gary W. Skeels, Diane M. Chapman, Edith M. Flanigen
  • Patent number: 5271761
    Abstract: This invention relates to molecular sieve compositions and processes for using the molecular sieves. The molecular sieves have a three-dimensional microporous crystalline framework structure of tetrahedral oxide units of AlO.sub.2, SiO.sub.2, TiO.sub.2 and/or FeO.sub.2. These molecular sieves can be prepared by contacting a starting zeolite with a solution or slurry of a fluoro salt of titanium and/or iron under effective process conditions to extract aluminum from the zeolite framework and substitute titanium and/or iron. The molecular sieves can be used as catalysts in hydrocarbon conversion processes and other processes.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: December 21, 1993
    Assignee: UOP
    Inventors: Gary W. Skeels, Richard Ramos
  • Patent number: 5262141
    Abstract: Silicon is inserted into the crystal lattice of zeolites containing defect sites by reaction with SiCl.sub.4 in the presence of oxygen. It has been found that by initially dehydrating the starting zeolite and removing the hydroxyl groups existing in the crystal defect sites, the generation of HCl from the SiCl.sub.4 reagent is avoided along with the undesirable aluminum hydrolysis reactions between the HCl thus-generated and the zeolite framework. The prior dehydration and dehydroxylation makes the presence of oxygen essential to the silicon insertion.
    Type: Grant
    Filed: December 21, 1992
    Date of Patent: November 16, 1993
    Assignee: UOP
    Inventor: Gary W. Skeels
  • Patent number: 5258570
    Abstract: The present invention relates to a zeolite beta catalyst characterized by critical limits of weak and strong acid species and exceptionally high catalytic activity. The catalyst is activated at a temperature effective to substantially reduce the concentration of strong acid species, i.e., hydronium cations, without substantially reducing the concentration of weak acid species, i.e., hydroxoaluminum cations, preferably following a calcining step wherein a synthesized zeolite beta catalyst containing a templating agent is calcined at a temperature in the range of from about 200.degree. to 1000.degree. C. in order to remove a substantial portion of the catalyst templating agent and an ion-exchanging step wherein the calcined catalyst is ion-exchanged with a salt solution containing at least one hydrogen forming cation selected from NH.sub.4.sup.+ and quaternary ammonium. Conversion processes utilizing the catalyst of the invention also are disclosed.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: November 2, 1993
    Assignee: UOP
    Inventors: Gary W. Skeels, Edith M. Flanigen
  • Patent number: 5248491
    Abstract: A novel aluminosilicate zeolite molecular sieve, denominated LZ-276, having effective pore diameters in the small to medium size range and possibly being topologically related to zeolite Phi, is synthesized hydrothermally in the TEAOH-Na.sub.2 O--SiO.sub.2 --Al.sub.2 O.sub.3 --H.sub.2 O system at a temperature of from 100.degree. C. to 150.degree. C.
    Type: Grant
    Filed: December 20, 1991
    Date of Patent: September 28, 1993
    Assignee: UOP
    Inventors: Gary W. Skeels, Marilyn R. Sears
  • Patent number: 5208197
    Abstract: The combination of a steam-stabilized form of zeolite Y, known in the art as Y-85, and a form of zeolite beta which has been modified to maximize the weak acid sites and minimize the strong acid sites, is found to be a uniquely effective acidic component of a hydrocracking catalyst for the production of gasoline. Both the catalyst composition and the hydrocracking process utilizing the catalyst are disclosed.
    Type: Grant
    Filed: May 19, 1992
    Date of Patent: May 4, 1993
    Assignee: UOP
    Inventors: James G. Vassilakis, Donald F. Best, Gary W. Skeels, Edith M. Flanigen
  • Patent number: 5192522
    Abstract: A novel aluminosilicate zeolite, denominated LZ-277 is synthesized hydrothermally from aqueous gels in the Na.sub.2 O--Al.sub.2 O.sub.3 --SiO.sub.2 system and in the absence of an organic templating agent. The as-synthesized LZ-277 has a chemical composition on an anhydrous basis expressed in terms of molar oxide ratios of:1.0.+-.0.1 Na.sub.2 O:Al.sub.2 O.sub.3 :3-15 SiO.sub.2and has a low adsorptive capacity for SF.sub.6 compared with the prior known, and possibly topologically related, zeolite Phi.
    Type: Grant
    Filed: November 26, 1991
    Date of Patent: March 9, 1993
    Assignee: UOP
    Inventors: Gary W. Skeels, Marilyn R. Sears
  • Patent number: 5186918
    Abstract: Molecular sieve compositions are prepared by extracting aluminum and substituting chromium and/or tin for extracted aluminum to give molecular sieve products containing framework chromium and/or tin atoms. The process of preparing the chromium and/or tin-containing molecular sieves invovles contacting a starting molecular sieve with a solution or slurry of at least one of a fluoro salt of chromium or a fluoro salt of tin under effective process conditions to provide for aluminum extraction and substitution of chromium and/or tin. These compositions are effective as hydrocarbon conversion catalysts and for separating mixtures of molecular species.
    Type: Grant
    Filed: January 25, 1991
    Date of Patent: February 16, 1993
    Assignee: UOP
    Inventors: Gary W. Skeels, Diane M. Chapman, Edith M. Flanigen
  • Patent number: 5176817
    Abstract: This invention relates to molecular sieve compositions and processes for using the molecular sieves. The molecular sieves have a three-dimensional microporous crystalline framework structure of tetrahedral oxide units of AlO.sub.2, SiO.sub.2, TiO.sub.2 and/or FeO.sub.2. These molecular sieves can be prepared by contacting a starting zeolite with a solution or slurry of a fluoro salt of titanium and/or iron under effective process conditions to extract aluminum from the zeolite framework and substitute titanium and/or iron. The molecular sieves can be used as catalysts in hydrocarbon conversion processes and other processes.
    Type: Grant
    Filed: December 16, 1991
    Date of Patent: January 5, 1993
    Assignee: UOP
    Inventors: Gary W. Skeels, Richard Ramos
  • Patent number: 5160033
    Abstract: The combination of a steam-stabilized form of zeolite Y, known in the art as Y-85, and a form of zeolite beta which has been modified to maximize the weak acid sites and minimize the strong acid sites, is found to be a uniquely effective acidic component of a hydrocracking catalyst for the production of gasoline. Both the catalyst composition and the hydrocracking process utilizing the catalyst are disclosed.
    Type: Grant
    Filed: May 1, 1991
    Date of Patent: November 3, 1992
    Assignee: UOP
    Inventors: James G. Vassilakis, Donald F. Best, Gary W. Skeels, Edith M. Flanigen
  • Patent number: 5116794
    Abstract: The present invention relates to methods for enhancing at least one catalytic property of a crystalline microporous three-dimensional solid catalyst having the structure and composition of zeolite beta for use in hydrocarbon conversion processes. An essential step in the methods of the present invention comprises activating the catalyst which had previously been calcined and subjected to ion-exchange with a hydrogen-forming cation by heating in air or in inert atmosphere at a temperature of from about 575.degree.-657.degree. C. and for a period of time sufficient to enhance at least one catalytic property of the catalyst for use in the hydrocarbon conversion process. Typical of the enhanced catalytic properties which can be achieved in accordance with the present invention are catalytic activity and catalytic selectivity.
    Type: Grant
    Filed: June 21, 1990
    Date of Patent: May 26, 1992
    Assignee: UOP
    Inventors: Gary W. Skeels, Edith M. Flanigen
  • Patent number: 5100644
    Abstract: The removal of aluminum and silicon atoms from the framework of crystalline zeolites and the reinsertion of at least some of the removed silicon atoms into the sites vacated by extracted aluminum atoms is accomplished by the process of contacting the zeolite with an aqueous solution of a bifluoride salt, preferably ammonium bifluoride. The treated zeolites have higher crystal destruction temperatures than their precursor starting zeolites.
    Type: Grant
    Filed: December 14, 1990
    Date of Patent: March 31, 1992
    Assignee: UOP
    Inventors: Gary W. Skeels, Diane M. Chapman-Snyder, Edith M. Flanigen
  • Patent number: 5098687
    Abstract: This invention relates to molecular sieve compositions and processes for using the molecular sieves. The molecular sieves have a three-dimensional microporous crystalline framework structure of tetrahedral oxide units of AlO.sub.2, SiO.sub.2, TiO.sub.2 and/or FeO.sub.2. These molecular sieves can be prepared by contacting a starting zeolite with a solution or slurry of a fluoro salt of titanium and/or iron under effective process conditions to extract aluminum from the zeolite framework and substitute titanium and/or iron. The molecular sieves can be used as catalysts in hydrocarbon conversion processes and other processes.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: March 24, 1992
    Assignee: UOP
    Inventors: Gary W. Skeels, Richard Ramos
  • Patent number: 5095169
    Abstract: The present invention relates to processes for isomerizing normal paraffin hydrocarbons to produce products containing non-normal hydrocarbons using a zeolite beta catalyst that has been activated in order to enhance its catalytic properties. In accordance with the present invention, the zeolite beta catalyst is activated at a temperature effective to substantially reduce the concentration of strong acid species, i.e., hydronium cations, without substantially reducing the concentration of weak acid species, i.e., hydroxoaluminum cations, both of said strong acid species and weak acid species being initially present on the catalyst prior to activation. In addition, the isomerization step is preferably conducted at a temperature at least 300.degree. C. lower than the activation temperature.
    Type: Grant
    Filed: October 11, 1990
    Date of Patent: March 10, 1992
    Assignee: UOP
    Inventors: Gary W. Skeels, Edith M. Flanigen
  • Patent number: 4996034
    Abstract: In the process for inserting extraneous silicon atoms into lattice sites of zeolite crystals from which aluminum atoms have been extracted, it has been found that the use of more concentrated fluorosilicate salt solutions and shorter contact times between the zeolite crystals and the salt solution than heretofore proposed, enables the production of more highly siliceous products with less defect structure. Advantageously the zeolite crystals are contacted with the concentrated fluorosilicate salt solution in a stepwise manner with the crystals being washed to remove fluoride ions between each contact with the salt solution.
    Type: Grant
    Filed: December 22, 1989
    Date of Patent: February 26, 1991
    Assignee: UOP
    Inventor: Gary W. Skeels