Patents by Inventor Gaurav Jitendra Shah

Gaurav Jitendra Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9481615
    Abstract: Disclosed herein are methods of performing microchemical reactions and electro-wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing 18F.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: November 1, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: R. Michael Van Dam, Chang-Jin Kim, Supin Chen, Huijiang Ding, Gaurav Jitendra Shah, Pei Yuin Keng
  • Publication number: 20160107951
    Abstract: Disclosed herein are methods of performing microchemical reactions and electro-wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing 18F.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 21, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: R. Michael Van Dam, Chang-Jin Kim, Supin Chen, Huijiang Ding, Gaurav Jitendra Shah, Pei Yuin Keng
  • Patent number: 9193640
    Abstract: Disclosed herein are methods of performing microchemical reactions and electro-wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing 18F.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: November 24, 2015
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: R. Michael Van Dam, Chang-Jin Kim, Supin Chen, Huijiang Ding, Gaurav Jitendra Shah, Pei Yuin Keng
  • Publication number: 20150203416
    Abstract: Disclosed herein are methods of performing microchemical reactions and electro-wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing 18F.
    Type: Application
    Filed: March 10, 2015
    Publication date: July 23, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: R. Michael Van Dam, Chang-Jin Kim, Supin Chen, Huijiang Ding, Gaurav Jitendra Shah, Pei Yuin Keng
  • Patent number: 9005544
    Abstract: Disclosed herein are methods of performing microchemical reactions and electro-wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing 18F.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 14, 2015
    Assignee: The Regents of the University of California
    Inventors: R. Michael Van Dam, Chang-Jin Kim, Supin Chen, Huijiang Ding, Gaurav Jitendra Shah, Pei Yuin Keng
  • Publication number: 20120264932
    Abstract: Disclosed herein are methods of performing microchemical reactions and electro- wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing 18F.
    Type: Application
    Filed: October 15, 2010
    Publication date: October 18, 2012
    Inventors: R. Michael Van Dam, Chang-Jin Kim, Supin Chen, Huijiang Ding, Gaurav Jitendra Shah, Pei Yuin Keng
  • Patent number: 8093064
    Abstract: Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: January 10, 2012
    Assignee: The Regents of the University of California
    Inventors: Gaurav Jitendra Shah, Chang-Jin Kim
  • Publication number: 20090283407
    Abstract: Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 19, 2009
    Inventors: Gaurav Jitendra Shah, Chang-Jin Kim