Patents by Inventor Gautam Pisharody

Gautam Pisharody has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11609505
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for verification and re-use of process fluids. The apparatus generally includes a tool for performing lithography, and a recirculation path coupled to the tool. The recirculation path generally includes a collection unit coupled at first end to a first end of the tool, and a probe coupled at a first end to a second end of the collection unit, the probe for determining one or more characteristics of a fluid flowing from the tool. The recirculation path of the apparatus further generally includes a purification unit coupled at a first end to a third end of the collection unit, the purification unit further coupled at a second end to a second end of the probe, the purification unit for changing a characteristic of the fluid.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Mangesh Ashok Bangar, Gautam Pisharody, Lancelot Huang, Alan L. Tso, Douglas A. Buchberger, Jr., Huixiong Dai, Dmitry Lubomirsky, Srinivas D. Nemani, Christopher Siu Wing Ngai
  • Patent number: 11555730
    Abstract: A method and apparatus for determining particle contamination of a process fluid is disclosed herein. In one example, a fluid resistivity measurement probe is provided. The system includes an upstream fluid conduit, a downstream fluid conduit, and a measuring section. The measuring section has a metal rod, and a ground electrode. The ground electrode surrounds and is coaxial with the metal rod. The upstream fluid conduit is coupled to a first end of the ground electrode. The downstream fluid conduit is coupled to a second end of the ground electrode. The metal rod and the ground electrode define a space therebetween. The space flows a fluid from the upstream fluid conduit to the downstream fluid conduit.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: January 17, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Douglas A. Buchberger, Jr., Gautam Pisharody, Lancelot Huang
  • Publication number: 20220317579
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for verification and re-use of process fluids. The apparatus generally includes a tool for performing lithography, and a recirculation path coupled to the tool. The recirculation path generally includes a collection unit coupled at first end to a first end of the tool, and a probe coupled at a first end to a second end of the collection unit, the probe for determining one or more characteristics of a fluid flowing from the tool. The recirculation path of the apparatus further generally includes a purification unit coupled at a first end to a third end of the collection unit, the purification unit further coupled at a second end to a second end of the probe, the purification unit for changing a characteristic of the fluid.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 6, 2022
    Inventors: Mangesh Ashok BANGAR, Gautam PISHARODY, Lancelot HUANG, Alan L. TSO, Douglas A. BUCHBERGER, JR., Huixiong DAI, Dmitry LUBOMIRSKY, Srinivas D. NEMANI, Christopher Siu Wing Ngai
  • Publication number: 20220319896
    Abstract: Embodiments of substrate supports are provided herein. In some embodiments, a substrate support for use in a chemical vapor deposition (CVD) chamber includes: a pedestal to support a substrate, wherein the pedestal includes a dielectric plate coupled to a pedestal body; a rotary union coupled to the pedestal, wherein the rotary union includes a stationary housing disposed about a rotor; a drive assembly coupled to the rotary union; a coolant union coupled to the rotary union and having a coolant inlet fluidly coupled to coolant channels disposed in the pedestal via a coolant line; an RF rotary joint coupled to the coolant union and having an RF connector configured to couple the pedestal to an RF bias power source; and an RF conduit that extends from the RF connector to the pedestal through a central opening of the pedestal body to provide RF bias to the pedestal.
    Type: Application
    Filed: April 2, 2021
    Publication date: October 6, 2022
    Inventors: Qiwei LIANG, Douglas Arthur BUCHBERGER, Jr., Gautam PISHARODY, Dmitry LUBOMIRSKY, Shekhar ATHANI
  • Publication number: 20220113177
    Abstract: A method and apparatus for determining particle contamination of a process fluid is disclosed herein. In one example, a fluid resistivity measurement probe is provided. The system includes an upstream fluid conduit, a downstream fluid conduit, and a measuring section. The measuring section has a metal rod, and a ground electrode. The ground electrode surrounds and is coaxial with the metal rod. The upstream fluid conduit is coupled to a first end of the ground electrode. The downstream fluid conduit is coupled to a second end of the ground electrode. The metal rod and the ground electrode define a space therebetween. The space flows a fluid from the upstream fluid conduit to the downstream fluid conduit.
    Type: Application
    Filed: October 9, 2020
    Publication date: April 14, 2022
    Inventors: Douglas A. BUCHBERGER, Jr., Gautam PISHARODY, Lancelot HUANG
  • Patent number: 10879094
    Abstract: An electrostatic chucking force tool is described that may be used on workpiece carriers for micromechanical and semiconductor processing. One example includes a workpiece fitting to hold a workpiece when gripped by an electrostatic chucking force by an electrostatic chuck, an arm coupled to the workpiece fitting to pull the workpiece through the workpiece fitting laterally across the chuck, and a force gauge coupled to the arm to measure an amount of force with which the workpiece fitting is pulled by the arm in order to move the workpiece.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: December 29, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas D. Nemani, Gautam Pisharody, Seshadri Ramaswami, Shambhu N. Roy, Niranjan Kumar
  • Publication number: 20190051495
    Abstract: A plasma reactor for processing a workpiece includes a chamber having a dielectric window, a workpiece support to hold a workpiece in the chamber, a rotary coupling comprising a stationary stage configured to be coupled to a microwave source and a rotatable stage having an axis of rotation, a microwave antenna and overlying the dielectric window of the chamber, a rotary actuator to rotate the microwave antenna, and a process gas distributor including a gas distribution ring surrounding the workpiece support. The microwave antenna includes at least one conduit coupled to the rotary stage. The gas distribution ring including a cylindrical chamber liner separating a circular conduit from the chamber and a plurality of apertures extending radially through the liner to connect the conduit to the chamber.
    Type: Application
    Filed: January 24, 2018
    Publication date: February 14, 2019
    Inventors: Qiwei Liang, Jie Zhou, Adib M. Khan, Gautam Pisharody, Guannan Chen, Chentsau Ying, Srinivas D. Nemani
  • Publication number: 20180374736
    Abstract: Embodiments of the disclosure relate to the use of an electrostatic carrier for securing, transporting and assembling dies on a substrate. In one embodiment, an electrostatic carrier includes a body having a top surface and a bottom surface, at least a first bipolar chucking electrode disposed within the body, at least two contact pads disposed on the bottom surface of the body and connected to the first bipolar chucking electrode, and a floating electrode disposed between the first bipolar chucking electrode and the bottom surface. In another embodiment, a die-assembling system includes the electrostatic carrier configured to electrostatically secure a plurality of dies, a carrier-holding platform configured to hold the electrostatic carrier, a die input platform and a loading robot having a range of motion configured to pick the plurality of dies from the die input platform and place them on the electrostatic carrier.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 27, 2018
    Inventors: Niranjan KUMAR, Kim Ramkumar VELLORE, Douglas H. BURNS, Gautam PISHARODY, Seshadri RAMASWAMI, Douglas A. BUCHBERGER, JR.
  • Publication number: 20180144959
    Abstract: An electrostatic chucking force tool is described that may be used on workpiece carriers for micromechanical and semiconductor processing. One example includes a workpiece fitting to hold a workpiece when gripped by an electrostatic chucking force by an electrostatic chuck, an arm coupled to the workpiece fitting to pull the workpiece through the workpiece fitting laterally across the chuck, and a force gauge coupled to the arm to measure an amount of force with which the workpiece fitting is pulled by the arm in order to move the workpiece.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 24, 2018
    Inventors: Srinivas D. Nemani, Gautam Pisharody, Seshadri Ramaswami, Shambhu N. Roy, Niranjan Kumar
  • Publication number: 20180122679
    Abstract: A substrate carrier with contacts is described that is balanced for thermal stress. In one example workpiece carrier has a rigid substrate configured to support a workpiece to be carried for processing, a first dielectric layer over the substrate, an electrostatic conductive electrode over the first dielectric layer to electrostatically hold the workpiece to be carried, a second dielectric layer over the electrode to electrically isolate the workpiece from the electrode, and a third dielectric layer under the substrate to counter thermal stress applied to the substrate by the first and second dielectric layers.
    Type: Application
    Filed: October 28, 2016
    Publication date: May 3, 2018
    Inventors: Shambhu N. Roy, Gautam Pisharody, Seshadri Ramaswami, Srinivas D. Nemani, Zhong Qiang Hua, Douglas A. Buchberger, JR., Niranjan Kumar, Ellie Y. Yieh
  • Publication number: 20180025931
    Abstract: A processed wafer is described that may be used as a workpiece carrier in semiconductor and mechanical processing. In some examples, the workpiece carrier includes a substrate, an electrode formed on the substrate to carry an electric charge to grip a workpiece, a through hole through the substrate and connected to the electrode, and a dielectric layer over the substrate to isolate the electrode from the workpiece.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 25, 2018
    Inventors: Srinivas D. Nemani, Shambhu N. Roy, Gautam Pisharody, Douglas A. Buchberger, JR., Ellie Y. Yieh, Zhong Qiang Hua