Patents by Inventor Gavriel Mizrahi

Gavriel Mizrahi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11917587
    Abstract: Supporting multi-signal source communications in a distributed communications system (DCS) is disclosed. The DCS includes a routing circuit configured to route downlink and uplink communications signals between multiple signal sources and a number of remote units. In examples disclosed herein, the routing circuit and each of the remote units are functionally divided based on an open radio access network (O-RAN) Split 7.2 configuration. To support downlink communications from multiple signal sources, the routing circuit generates a downlink frequency-domain communications signal, which includes one or more selected logical channels associated with one or more of the multiple signal sources, for each of the remote units in the DCS. Accordingly, each remote unit converts the downlink frequency-domain communications signal into a downlink time-domain communications signal for transmission in a downlink radio frequency (RF) communications signal.
    Type: Grant
    Filed: March 16, 2023
    Date of Patent: February 27, 2024
    Assignee: Corning Research & Development Corporation
    Inventor: Gavriel Mizrahi
  • Publication number: 20230224872
    Abstract: Supporting multi-signal source communications in a distributed communications system (DCS) is disclosed. The DCS includes a routing circuit configured to route downlink and uplink communications signals between multiple signal sources and a number of remote units. In examples disclosed herein, the routing circuit and each of the remote units are functionally divided based on an open radio access network (O-RAN) Split 7.2 configuration. To support downlink communications from multiple signal sources, the routing circuit generates a downlink frequency-domain communications signal, which includes one or more selected logical channels associated with one or more of the multiple signal sources, for each of the remote units in the DCS. Accordingly, each remote unit converts the downlink frequency-domain communications signal into a downlink time-domain communications signal for transmission in a downlink radio frequency (RF) communications signal.
    Type: Application
    Filed: March 16, 2023
    Publication date: July 13, 2023
    Inventor: Gavriel Mizrahi
  • Patent number: 11627558
    Abstract: Supporting multi-signal source communications in a distributed communications system (DCS) is disclosed. The DCS includes a routing circuit configured to route downlink and uplink communications signals between multiple signal sources and a number of remote units. In examples disclosed herein, the routing circuit and each of the remote units are functionally divided based on an open radio access network (O-RAN) Split 7.2 configuration. To support downlink communications from multiple signal sources, the routing circuit generates a downlink frequency-domain communications signal, which includes one or more selected logical channels associated with one or more of the multiple signal sources, for each of the remote units in the DCS. Accordingly, each remote unit converts the downlink frequency-domain communications signal into a downlink time-domain communications signal for transmission in a downlink radio frequency (RF) communications signal.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: April 11, 2023
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventor: Gavriel Mizrahi
  • Publication number: 20230056739
    Abstract: Autonomous power saving in a remote unit in a wireless communications system (WCS) is provided. The remote unit can be part of a distributed communications system (DCS) in the WCS, wherein the remote unit communicates downlink and uplink communications signals over a set of radio resources based on a non-cooperative connectivity to a signal source. Herein, the remote unit is configured to opportunistically engage in a power saving mode operation without requiring control signaling and/or a real time trigger from the signal source. More specifically, the remote unit is configured to determine an inactivity period(s) in the set of radio resources that is suited for the power saving mode operation and autonomously enter the power saving mode operation during the determined inactivity period(s). By autonomously engaging in the power saving mode operation, it is possible to reduce power consumption in the remote unit and overall operating expense of the WCS.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 23, 2023
    Inventors: Benjamin Imanilov, Shlomi Kulik, Gavriel Mizrahi
  • Publication number: 20220385367
    Abstract: Dynamic radio frequency (RF) beam pattern adaptation in a wireless communications system (WCS) is provided. The WCS typically includes a number of wireless devices, such as remote units and/or base stations, for enabling indoor wireless communications to user devices. The wireless devices are typically mounted on a fixed structure. Notably, a wireless device may be preconfigured to support RF beamforming based on an RF beam pattern that corresponds to a configured orientation. However, the wireless device can be installed with a different orientation from the configured orientation, thus requiring the RF beam pattern to be adapted accordingly. In this regard, a wireless device is configured to dynamically determine an actual orientation of the wireless device and automatically adapt the RF beam pattern based on the determined actual orientation. As a result, it is possible to reduce installation and calibration time associated with deployment of the wireless device in the WCS.
    Type: Application
    Filed: May 18, 2022
    Publication date: December 1, 2022
    Inventors: Gavriel Mizrahi, Shirish Nagaraj, Deepak Pengoria, Hsien Li Woo
  • Publication number: 20220110098
    Abstract: Supporting multi-signal source communications in a distributed communications system (DCS) is disclosed. The DCS includes a routing circuit configured to route downlink and uplink communications signals between multiple signal sources and a number of remote units. In examples disclosed herein, the routing circuit and each of the remote units are functionally divided based on an open radio access network (O-RAN) Split 7.2 configuration. To support downlink communications from multiple signal sources, the routing circuit generates a downlink frequency-domain communications signal, which includes one or more selected logical channels associated with one or more of the multiple signal sources, for each of the remote units in the DCS. Accordingly, each remote unit converts the downlink frequency-domain communications signal into a downlink time-domain communications signal for transmission in a downlink radio frequency (RF) communications signal.
    Type: Application
    Filed: October 2, 2020
    Publication date: April 7, 2022
    Inventor: Gavriel Mizrahi
  • Patent number: 10819477
    Abstract: Digital wireless distributed communications systems (WDCS) employing a centralized spectrum chunk construction of communications channels for distribution to remote units are disclosed. Individual, discrete communications channels received from one or more signal sources are centrally constructed into spectrum chunks before being distributed to remote units. When the communications channels are constructed into spectrum chunks, the individual communications channels are positioned in their respective defined center radio frequency (RF) frequencies of their respective communications band before being distributed to the remote units. Thus, the remote units do not have to include the additional cost and associated power consumption of processing circuitry to construct the communications bands for individual communications channels.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: October 27, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Dror Harel, Gavriel Mizrahi
  • Patent number: 10820319
    Abstract: Embodiments of the disclosure relate to partitioning a time-division-based communications link for communicating multiple types of communications signals in a wireless distribution system (WDS). A WDS is configured to communicate multiple types of communications signals over a time-division-based communications link. For example, the WDS may be configured to communicate a digital baseband signal as a first type of communications signal and an Ethernet signal as a second type of communications signal. In this regard, a protocols division routing circuit(s) is provided in the WDS and configured to partition the time-division-based communications link between multiple types of communications signals based on a link configuration ratio.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: October 27, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Dror Harel, Gavriel Mizrahi, Ofer Nisan
  • Patent number: 10555312
    Abstract: Embodiments of the disclosure relate to allocating digital channels into spectrum chunks in a wireless distribution system (WDS). In a WDS, a central unit is configured to communicate downlink and uplink communications signals with a plurality of remote units over a plurality of downlink and uplink communication links. In one aspect, discrete downlink channels in the downlink communications signals are grouped into downlink spectrum chunks at the central unit when the processing circuitry at the central unit is underutilized. In another aspect, discrete uplink channels in the uplink communications signals are grouped into uplink spectrum chunks at the remote units when the processing circuitries at the remote units are underutilized. By grouping discrete downlink channels into downlink spectrum chunks and/or grouping uplink discrete channels into uplink spectrum chunks, it is possible to optimize system resource utilization in the WDS, thus providing enhanced overall performance in the WDS.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: February 4, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Dror Harel, Gavriel Mizrahi, Ofer Nisan, Dror Ben-Shlomo
  • Patent number: 10523327
    Abstract: Embodiments of the disclosure relate to digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs). In this regard, in one aspect, a DAIM is a multi-functional device capable of distributing the digital and/or analog communications signals to a local-area DASs in a wide-area DAS. The DAIM comprises an analog radio frequency (RF) communications signal interface for coupling with an analog signal source, a digital communications interface for coupling with a digital signal source, an analog local distribution interface for coupling with a remote antenna unit (RAU), and at least one digital remote distribution interface for coupling with a head-end unit (HEU) of the local-area DAS. By employing the DAIM in the wide-area DAS, it is possible to flexibly reconfigure the wide-area DAS for distributing digital and/or analog communications signals over the digital communications mediums.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 31, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Dror Harel, Gavriel Mizrahi
  • Publication number: 20190296871
    Abstract: Digital wireless distributed communications systems (WDCS) employing a centralized spectrum chunk construction of communications channels for distribution to remote units are disclosed. Individual, discrete communications channels received from one or more signal sources are centrally constructed into spectrum chunks before being distributed to remote units. When the communications channels are constructed into spectrum chunks, the individual communications channels are positioned in their respective defined center radio frequency (RF) frequencies of their respective communications band before being distributed to the remote units. Thus, the remote units do not have to include the additional cost and associated power consumption of processing circuitry to construct the communications bands for individual communications channels.
    Type: Application
    Filed: April 3, 2019
    Publication date: September 26, 2019
    Inventors: Dror Harel, Gavriel Mizrahi
  • Publication number: 20190239230
    Abstract: Embodiments of the disclosure relate to allocating digital channels into spectrum chunks in a wireless distribution system (WDS). In a WDS, a central unit is configured to communicate downlink and uplink communications signals with a plurality of remote units over a plurality of downlink and uplink communication links. In one aspect, discrete downlink channels in the downlink communications signals are grouped into downlink spectrum chunks at the central unit when the processing circuitry at the central unit is underutilized. In another aspect, discrete uplink channels in the uplink communications signals are grouped into uplink spectrum chunks at the remote units when the processing circuitries at the remote units are underutilized. By grouping discrete downlink channels into downlink spectrum chunks and/or grouping uplink discrete channels into uplink spectrum chunks, it is possible to optimize system resource utilization in the WDS, thus providing enhanced overall performance in the WDS.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Inventors: Dror Harel, Gavriel Mizrahi, Ofer Nisan, Dror Ben-Shlomo
  • Patent number: 10361783
    Abstract: Embodiments of the disclosure relate to digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs). In this regard, in one aspect, a DIM is a multi-functional device capable of distributing the digital and/or analog communications signals to a local-area DASs in the wide-area DAS. The DIM comprises a digital communications interface for coupling with a digital signal source, an analog local distribution interface for coupling with an analog signal source, and at least one digital remote distribution interface for coupling with a head-end unit (HEU) of the local-area DAS. By employing the DIM in the wide-area DAS, it is possible to flexibly reconfigure the wide-area DAS for distributing digital and/or analog communications signals over the digital communications mediums.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: July 23, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Dror Harel, Gavriel Mizrahi
  • Patent number: 10292168
    Abstract: Embodiments of the disclosure relate to allocating digital channels into spectrum chunks in a wireless distribution system (WDS). In a WDS, a central unit is configured to communicate downlink and uplink communications signals with a plurality of remote units over a plurality of downlink and uplink communication links. In one aspect, discrete downlink channels in the downlink communications signals are grouped into downlink spectrum chunks at the central unit when the processing circuitry at the central unit is underutilized. In another aspect, discrete uplink channels in the uplink communications signals are grouped into uplink spectrum chunks at the remote units when the processing circuitries at the remote units are underutilized. By grouping discrete downlink channels into downlink spectrum chunks and/or grouping uplink discrete channels into uplink spectrum chunks, it is possible to optimize system resource utilization in the WDS, thus providing enhanced overall performance in the WDS.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: May 14, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Dror Harel, Gavriel Mizrahi, Ofer Nisan, Dror Ben-Shlomo
  • Publication number: 20190123826
    Abstract: Embodiments of the disclosure relate to digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs). In this regard, in one aspect, a DAIM is a multi-functional device capable of distributing the digital and/or analog communications signals to a local-area DASs in a wide-area DAS. The DAIM comprises an analog radio frequency (RF) communications signal interface for coupling with an analog signal source, a digital communications interface for coupling with a digital signal source, an analog local distribution interface for coupling with a remote antenna unit (RAU), and at least one digital remote distribution interface for coupling with a head-end unit (HEU) of the local-area DAS. By employing the DAIM in the wide-area DAS, it is possible to flexibly reconfigure the wide-area DAS for distributing digital and/or analog communications signals over the digital communications mediums.
    Type: Application
    Filed: December 19, 2018
    Publication date: April 25, 2019
    Inventors: Dror Harel, Gavriel Mizrahi
  • Publication number: 20190090238
    Abstract: Embodiments of the disclosure relate to partitioning a time-division-based communications link for communicating multiple types of communications signals in a wireless distribution system (WDS). A WDS is configured to communicate multiple types of communications signals over a time-division-based communications link. For example, the WDS may be configured to communicate a digital baseband signal as a first type of communications signal and an Ethernet signal as a second type of communications signal. In this regard, a protocols division routing circuit(s) is provided in the WDS and configured to partition the time-division-based communications link between multiple types of communications signals based on a link configuration ratio.
    Type: Application
    Filed: November 19, 2018
    Publication date: March 21, 2019
    Inventors: Dror Harel, Gavriel Mizrahi, Ofer Nisan
  • Patent number: 10187151
    Abstract: Embodiments of the disclosure relate to digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs). In this regard, in one aspect, a DAIM is a multi-functional device capable of distributing the digital and/or analog communications signals to a local-area DASs in a wide-area DAS. The DAIM comprises an analog radio frequency (RF) communications signal interface for coupling with an analog signal source, a digital communications interface for coupling with a digital signal source, an analog local distribution interface for coupling with a remote antenna unit (RAU), and at least one digital remote distribution interface for coupling with a head-end unit (HEU) of the local-area DAS. By employing the DAIM in the wide-area DAS, it is possible to flexibly reconfigure the wide-area DAS for distributing digital and/or analog communications signals over the digital communications mediums.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Dror Harel, Gavriel Mizrahi
  • Patent number: 10187150
    Abstract: Direct communicative coupling of a base station(s) to a remote unit for exchanging communications services with a distributed communications system (DCS) is disclosed. For example, the remote unit may include a remote antenna unit that is provided in a distributed antenna system (DAS) as one type of DCS. In this manner, the remote unit can facilitate distribution of communications services from a base station into the DCS at locations other than at a centralized location in the DCS, such as at a central unit or head-end equipment. Various DCS configurations are possible that include a remote unit supporting the direct communicatively coupling to a base station(s) for distributing communications services in a DCS.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Gavriel Mizrahi, Parwiz Shekalim
  • Patent number: 10136427
    Abstract: Embodiments of the disclosure relate to partitioning a time-division-based communications link for communicating multiple types of communications signals in a wireless distribution system (WDS). A WDS is configured to communicate multiple types of communications signals over a time-division-based communications link. For example, the WDS may be configured to communicate a digital baseband signal as a first type of communications signal and an Ethernet signal as a second type of communications signal. In this regard, a protocols division routing circuit(s) is provided in the WDS and configured to partition the time-division-based communications link between multiple types of communications signals based on a link configuration ratio.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: November 20, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Dror Harel, Gavriel Mizrahi, Ofer Nisan
  • Patent number: 10110308
    Abstract: Embodiments of the disclosure relate to digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs). In this regard, in one aspect, a DIM is a multi-functional device capable of distributing the digital and/or analog communications signals to a local-area DASs in the wide-area DAS. The DIM comprises a digital communications interface for coupling with a digital signal source, an analog local distribution interface for coupling with an analog signal source, and at least one digital remote distribution interface for coupling with a head-end unit (HEU) of the local-area DAS. By employing the DIM in the wide-area DAS, it is possible to flexibly reconfigure the wide-area DAS for distributing digital and/or analog communications signals over the digital communications mediums.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: October 23, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Dror Harel, Gavriel Mizrahi